ترغب بنشر مسار تعليمي؟ اضغط هنا

Reconstruction of the local velocity field from the overdensity field and a gravitational acceleration that falls off from a point mass as r^-2 yields velocities in broad agreement with peculiar velocities measured with galaxy distance indicators. MO NDian gravity does not. To quantify this, we introduce the velocity angular correlation function as a diagnostic of peculiar velocity field alignment and coherence as a function of scale. It is independent of the bias parameter of structure formation in the standard model of cosmology and the acceleration parameter of MOND. A modified gravity acceleration consistent with observed large scale structure would need to asymptote to zero at large distances more like r^-2, than r^-1.
Baryon acoustic oscillations (BAO) at low redshift provide a precise and largely model-independent way to measure the Hubble constant, H0. The 6dF Galaxy Survey measurement of the BAO scale gives a value of H0 = 67 +/- 3.2 km/s/Mpc, achieving a 1-sig ma precision of 5%. With improved analysis techniques, the planned WALLABY (HI) and TAIPAN (optical) redshift surveys are predicted to measure H0 to 1-3% precision.
We perform a joint determination of the distance-redshift relation and cosmic expansion rate at redshifts z = 0.44, 0.6 and 0.73 by combining measurements of the baryon acoustic peak and Alcock-Paczynski distortion from galaxy clustering in the Wiggl eZ Dark Energy Survey, using a large ensemble of mock catalogues to calculate the covariance between the measurements. We find that D_A(z) = (1205 +/- 114, 1380 +/- 95, 1534 +/- 107) Mpc and H(z) = (82.6 +/- 7.8, 87.9 +/- 6.1, 97.3 +/- 7.0) km/s/Mpc at these three redshifts. Further combining our results with other baryon acoustic oscillation and distant supernovae datasets, we use a Monte Carlo Markov Chain technique to determine the evolution of the Hubble parameter H(z) as a stepwise function in 9 redshift bins of width dz = 0.1, also marginalizing over the spatial curvature. Our measurements of H(z), which have precision better than 7% in most redshift bins, are consistent with the expansion history predicted by a cosmological-constant dark-energy model, in which the expansion rate accelerates at redshift z < 0.7.
We present precise measurements of the growth rate of cosmic structure for the redshift range 0.1 < z < 0.9, using redshift-space distortions in the galaxy power spectrum of the WiggleZ Dark Energy Survey. Our results, which have a precision of aroun d 10% in four independent redshift bins, are well-fit by a flat LCDM cosmological model with matter density parameter Omega_m = 0.27. Our analysis hence indicates that this model provides a self-consistent description of the growth of cosmic structure through large-scale perturbations and the homogeneous cosmic expansion mapped by supernovae and baryon acoustic oscillations. We achieve robust results by systematically comparing our data with several different models of the quasi-linear growth of structure including empirical models, fitting formulae calibrated to N-body simulations, and perturbation theory techniques. We extract the first measurements of the power spectrum of the velocity divergence field, P_vv(k), as a function of redshift (under the assumption that P_gv(k) = -sqrt[P_gg(k) P_vv(k)] where g is the galaxy overdensity field), and demonstrate that the WiggleZ galaxy-mass cross-correlation is consistent with a deterministic (rather than stochastic) scale-independent bias model for WiggleZ galaxies for scales k < 0.3 h/Mpc. Measurements of the cosmic growth rate from the WiggleZ Survey and other current and future observations offer a powerful test of the physical nature of dark energy that is complementary to distance-redshift measures such as supernovae and baryon acoustic oscillations.
93 - Matthew Colless 2008
The 6dF Galaxy Survey (6dFGS) and the 2MASS Redshift Survey (2MRS) provide the most complete maps of the large-scale structures and motions in the nearby universe. These maps have been used to reconstruct the density field in the local volume, and to predict the corresponding velocity field and the dipole of the Local Group motion.
The 6dF Galaxy Survey provides a very large sample of galaxies with reliable measurements of Lick line indices and velocity dispersions. This sample can be used to explore the correlations between mass and stellar population parameters such as age, m etallicity and [alpha/Fe]. Preliminary results from such an analysis are presented here, and show that age and metallicity are significantly anti-correlated for both passive and star-forming galaxies. Passive galaxies have strong correlations between mass and metallicity and between age and alpha-element over-abundance, which combine to produce a downsizing relation between age and mass. For old passive galaxies, the different trends of M/L with mass and luminosity in different passbands result from the differential effect of the mass-metallicity relation on the luminosities in each passband. Future work with this sample will examine the Fundamental Plane of bulge-dominated galaxies and the influence of environment on relations between stellar population parameters and mass.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا