ترغب بنشر مسار تعليمي؟ اضغط هنا

Voluntary medical male circumcision (VMMC) reduces the risk of male HIV acquisition by 60%. Programmes to provide male circumcision (MC) to prevent HIV infection have been introduced in sub-Saharan African countries with high HIV burden. While large- scale provision of MMC is recent, traditional MC has long been conducted as part of male coming-of-age practices. How and at what age traditional MC occurs varies by ethnic groups within countries. Accurate estimates of MC coverage by age and type of circumcision (traditional or medical) over time at sub-national levels are essential for planning and delivering VMMCs to meet targets and evaluating their impacts on HIV incidence. In this paper, we developed a Bayesian competing risks time-to-event model to produce region-age-time-type specific probabilities and coverage of MC with probabilistic uncertainty. The model jointly synthesises data from household surveys and health system data on the number of VMMCs conducted. We demonstrated the model using data from five household surveys and VMMC programme data to produce estimates of MC coverage for 52 districts in South Africa between 2008 and 2019. Nationally in 2008, 24.1% (CI: 23.4-24.8%) of men aged 15-49 were traditionally circumcised and 19.4% (CI: 18.9-20.0%) were medically circumcised. Between 2008 and 2019, five million VMMCs were conducted, and MC coverage among men aged 15-49 increased to 64.0% (CI: 63.2-64.9%) and medical MC coverage to 42% (CI: 41.3-43.0%). MC coverage varied widely across districts, ranging from 13.4-86.3%. The average age of traditional MC ranged between 13 to 19 years, depending on local cultural practices.
Air pollution constitutes the highest environmental risk factor in relation to heath. In order to provide the evidence required for health impact analyses, to inform policy and to develop potential mitigation strategies comprehensive information is r equired on the state of air pollution. Information on air pollution traditionally comes from ground monitoring (GM) networks but these may not be able to provide sufficient coverage and may need to be supplemented with information from other sources (e.g. chemical transport models; CTMs). However, these may only be available on grids and may not capture micro-scale features that may be important in assessing air quality in areas of high population. We develop a model that allows calibration between multiple data sources available at different levels of support by allowing the coefficients of calibration equations to vary over space and time, enabling downscaling where the data is sufficient to support it. The model is used to produce high-resolution (1km $times$ 1km) estimates of NO$_2$ and PM$_{2.5}$ across Western Europe for 2010-2016. Concentrations of both pollutants are decreasing during this period, however there remain large populations exposed to levels exceeding the WHO Air Quality Guidelines and thus air pollution remains a serious threat to health.
Air pollution is a major risk factor for global health, with both ambient and household air pollution contributing substantial components of the overall global disease burden. One of the key drivers of adverse health effects is fine particulate matte r ambient pollution (PM$_{2.5}$) to which an estimated 3 million deaths can be attributed annually. The primary source of information for estimating exposures has been measurements from ground monitoring networks but, although coverage is increasing, there remain regions in which monitoring is limited. Ground monitoring data therefore needs to be supplemented with information from other sources, such as satellite retrievals of aerosol optical depth and chemical transport models. A hierarchical modelling approach for integrating data from multiple sources is proposed allowing spatially-varying relationships between ground measurements and other factors that estimate air quality. Set within a Bayesian framework, the resulting Data Integration Model for Air Quality (DIMAQ) is used to estimate exposures, together with associated measures of uncertainty, on a high resolution grid covering the entire world. Bayesian analysis on this scale can be computationally challenging and here approximate Bayesian inference is performed using Integrated Nested Laplace Approximations. Model selection and assessment is performed by cross-validation with the final model offering substantial increases in predictive accuracy, particularly in regions where there is sparse ground monitoring, when compared to current approaches: root mean square error (RMSE) reduced from 17.1 to 10.7, and population weighted RMSE from 23.1 to 12.1 $mu$gm$^{-3}$. Based on summaries of the posterior distributions for each grid cell, it is estimated that 92% of the worlds population reside in areas exceeding the World Health Organizations Air Quality Guidelines.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا