ترغب بنشر مسار تعليمي؟ اضغط هنا

We report about the main dynamical features of a model of leaky-integrate-and fire excitatory neurons with short term plasticity defined on random massive networks. We investigate the dynamics by a Heterogeneous Mean-Field formulation of the model, t hat is able to reproduce dynamical phases characterized by the presence of quasi-synchronous events. This formulation allows one to solve also the inverse problem of reconstructing the in-degree distribution for different network topologies from the knowledge of the global activity field. We study the robustness of this inversion procedure, by providing numerical evidence that the in-degree distribution can be recovered also in the presence of noise and disorder in the external currents. Finally, we discuss the validity of the heterogeneous mean-field approach for sparse networks, with a sufficiently large average in-degree.
Self-organized quasi periodicity is one of the most puzzling dynamical phases observed in systems of non linear coupled oscillators. The single dynamical units are not locked to the periodic mean field they produce, but they still feature a coherent behavior, through an unexplained complex form of correlation. We consider a class of leaky integrate-and-fire oscillators on random sparse and massive networks with dynamical synapses, featuring self-organized quasi periodicity, and we show how complex collective oscillations arise from constructive interference of microscopic dynamics. In particular, we find a simple quantitative relationship between two relevant microscopic dynamical time scales and the macroscopic time scale of the global signal. We show that the proposed relation is a general property of collective oscillations, common to all the partially synchronous dynamical phases analyzed. We argue that an analogous mechanism could be at the origin of similar network dynamics.
The dynamics of neural networks is often characterized by collective behavior and quasi-synchronous events, where a large fraction of neurons fire in short time intervals, separated by uncorrelated firing activity. These global temporal signals are c rucial for brain functioning. They strongly depend on the topology of the network and on the fluctuations of the connectivity. We propose a heterogeneous mean--field approach to neural dynamics on random networks, that explicitly preserves the disorder in the topology at growing network sizes, and leads to a set of self-consistent equations. Within this approach, we provide an effective description of microscopic and large scale temporal signals in a leaky integrate-and-fire model with short term plasticity, where quasi-synchronous events arise. Our equations provide a clear analytical picture of the dynamics, evidencing the contributions of both periodic (locked) and aperiodic (unlocked) neurons to the measurable average signal. In particular, we formulate and solve a global inverse problem of reconstructing the in-degree distribution from the knowledge of the average activity field. Our method is very general and applies to a large class of dynamical models on dense random networks.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا