ترغب بنشر مسار تعليمي؟ اضغط هنا

We establish a correspondence between representations up to homotopy of Lie groupoids and a certain type of simplicial vector bundles.
We introduce Poisson double algebroids, and the equivalent concept of double Lie bialgebroid, which arise as second-order infinitesimal counterparts of Poisson double groupoids. We develop their underlying Lie theory, showing how these objects are re lated by differentiation and integration. We use these results to revisit Lie 2-bialgebras by means of Poisson double structures.
The Linearization Theorem for proper Lie groupoids organizes and generalizes several results for classic geometries. Despite the various approaches and recent works on the subject, the problem of understanding invariant linearization remains somehow open. We address it here, by first giving a counter-example to a previous conjecture, and then proving a sufficient criterion that uses compatible complete metrics and covers the case of proper group actions. We also show a partial converse that fixes and extends previous results in the literature.
Metrics on Lie groupoids and differentiable stacks have been introduced recently, extending the Riemannian geometry of manifolds and orbifolds to more general singular spaces. Here we continue that theory, studying stacky curves on Riemannian stacks, measuring their length using stacky metrics, and introducing stacky geodesics. Our main results show that the length of stacky curves measure distances on the orbit space, characterize stacky geodesics as locally minimizing curves, and establish a stacky version of Hopf-Rinow Theorem. We include a concise overview that bypasses nonessential technicalities, and we lay stress on the examples of orbit spaces of isometric actions and leaf spaces of Riemannian foliations.
We combine classic stability results for foliations with recent results on deformations of Lie groupoids and Lie algebroids to provide a cohomological characterization for rigidity of compact foliations on compact manifolds.
In this paper we relate the study of actions of discrete groups over connected manifolds to that of their orbit spaces seen as differentiable stacks. We show that the orbit stack of a discrete dynamical system on a simply connected manifold encodes t he dynamics up to conjugation and inversion. We also prove a generalization of this result for arbitrary discrete groups and non-simply connected manifolds, and relate it to the covering theory of stacks. As applications, we obtain a geometric version of Rieffels theorem on irrational rotations of the circle, we compute the stack-theoretic fundamental group of hyperbolic toral automorphisms, and we revisit the classification of lens spaces.
We deal with the symmetries of a (2-term) graded vector space or bundle. Our first theorem shows that they define a (strict) Lie 2-groupoid in a natural way. Our second theorem explores the construction of nerves for Lie 2-categories, showing that it yields simplicial manifolds if the 2-cells are invertible. Finally, our third and main theorem shows that smooth pseudofunctors into our general linear 2-groupoid classify 2-term representations up to homotopy of Lie groupoids.
We study vector bundles over Lie groupoids, known as VB-groupoids, and their induced geometric objects over differentiable stacks. We establish a fundamental theorem that characterizes VB-Morita maps in terms of fiber and basic data, and use it to pr ove the Morita invariance of VB-cohomology, with implications to deformation cohomology of Lie groupoids and of classic geometries. We discuss applications of our theory to Poisson geometry, providing a new insight over Marsden-Weinstein reduction and the integration of Dirac structures. We conclude by proving that the derived category of VB-groupoids is a Morita invariant, which leads to a notion of VB-stacks, and solves (an instance of) an open question on representations up to homotopy.
We briefly review our results on the Lie theory underlying vector bundles over Lie groupoids and Lie algebroids, pointing out the role of Poisson geometry in extending these results to double Lie algebroids and LA-groupoids.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا