ترغب بنشر مسار تعليمي؟ اضغط هنا

It was previously suggested that an odd-frequency pair amplitude exists in the vicinity of boundaries in unconventional superconductors. We develop this idea and quest for a novel superconducting order parameter with an odd-frequency dependence. For this purpose, we focus on p-wave superconductors and extend the quasi-classical theory to include the odd-frequency dependence in the order parameter. Both of the frequency and spacial dependences of the order parameter are determined self-consistently. Under a finite electron-phonon interaction, it is found that an odd-frequency order parameter is stabilized near the boundary and coexists with the even-frequency one. By analyzing the induced odd-frequency pair amplitude in terms of the superconducting quasi-particle wavefunction, it is found that the mid-gap bound state generates the emergent odd-frequency order parameter.
A novel superconducting state under the broken time-reversal symmetry is studied in conventional phonon-mediated superconductors. By solving the Eliashberg equation self-consistently with the mass renormalization effect, it is found that the even- an d odd-frequency components of the order parameter coexist in the bulk system as a consequence of the broken time-reversal symmetry. This finding would direct more attention to the odd-frequency pairing that affects physical quantities, especially in strong coupling superconductors.
A single impurity problem is investigated for multiband s-wave superconductors with different sign order parameters (+-s-wave superconductors) suggested in Fe-pnictide superconductors. Not only intraband but also interband scattering is considered at the impurity. The latter gives rise to impurity-induced local boundstates close to the impurity. We present an exact form of the energy of the local boundstates as a function of strength of the two types of impurity scattering. The essential role of the impurity is unchanged in finite number of impurities. The main conclusions for a single impurity problem help us understand effects of dense impurities in the +-s-wave superconductors. Local density of states around the single impurity is also investigated. We suggest impurity site nuclear magnetic resonance as a suitable experiment to probe the local boundstates that is peculiar to the +-s-wave state. We find that the +-s-wave model is mapped to a chiral dx2-y2+-idxy-wave, reflecting the unconventional nature of the sign reversing order parameter. For a quantum magnetic impurity, interband scattering destabilizes the Kondo singlet.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا