ترغب بنشر مسار تعليمي؟ اضغط هنا

In analogy to the definition of the lambda-determinant, we define a one-parameter deformation of the Dodgson condensation formula for Pfaffians. We prove that the resulting rational function is a polynomial with weights given by the crossings and nes tings of perfect matchings and prove several identities and closed-form evaluations.
103 - Masao Ishikawa 2013
We study Okadas conjecture on $(q,t)$-hook formula of general $d$-complete posets. Proctor classified $d$-complete posets into 15 irreducible ones. We try to give a case-by-case proof of Okadas $(q,t)$-hook formula conjecture using the symmetric func tions. Here we give a proof of the conjecture for birds and banners, in which we use Gaspers identity for VWP-series ${}_{12}W_{11}$.
We prove a general quadratic formula for basic hypergeometric series, from which simple proofs of several recent determinant and Pfaffian formulas are obtained. A special case of the quadratic formula is actually related to a Gram determinant formula for Askey-Wilson polynomials. We also show how to derive a recent double-sum formula for the moments of Askey-Wilson polynomials from Newtons interpolation formula.
Motivated by the Gaussian symplectic ensemble, Mehta and Wang evaluated the $n$ by $n$ determinant $det((a+j-i)Gamma(b+j+i))$ in 2000. When $a=0$, Ciucu and Krattenthaler computed the associated Pfaffian $Pf((j-i)Gamma(b+j+i))$ with an application to the two dimensional dimer system in 2011. Recently we have generalized the latter Pfaffian formula with a $q$-analogue by replacing the Gamma function by the moment sequence of the little $q$-Jacobi polynomials. On the other hand, Nishizawa has found a $q$-analogue of the Mehta--Wang formula. Our purpose is to generalize both the Mehta-Wang and Nishizawa formulae by using the moment sequence of the little $q$-Jacobi polynomials. It turns out that the corresponding determinant can be evaluated explicitly in terms of the Askey-Wilson polynomials.
A variation of Zeilbergers holonomic ansatz for symbolic determinant evaluations is proposed which is tailored to deal with Pfaffians. The method is also applicable to determinants of skew-symmetric matrices, for which the original approach does not work. As Zeilbergers approach is based on the Laplace expansion (cofactor expansion) of the determinant, we derive our approach from the cofactor expansion of the Pfaffian. To demonstrate the power of our method, we prove, using computer algebra algorithms, some conjectures proposed in the paper Pfaffian decomposition and a Pfaffian analogue of q-Catalan Hankel determinants by Ishikawa, Tagawa, and Zeng. A minor summation formula related to partitions and Motzkin paths follows as a corollary.
A compound determinant identity for minors of rectangular matrices is established. As an application, we derive Vandermonde type determinant formulae for classical group characters.
Motivated by the Hankel determinant evaluation of moment sequences, we study a kind of Pfaffian analogue evaluation. We prove an LU-decomposition analogue for skew-symmetric matrices, called Pfaffian decomposition. We then apply this formula to evalu ate Pfaffians related to some moment sequences of classical orthogonal polynomials. In particular we obtain a product formula for a kind of q-Catalan Pfaffians. We also establish a connection between our Pfaffian formulas and certain weighted enumeration of shifted reverse plane partitions.
In this paper we shall survey the various methods of evaluating Hankel determinants and as an illustration we evaluate some Hankel determinants of a q-analogue of Catalan numbers. Here we consider $frac{(aq;q)_{n}}{(abq^{2};q)_{n}}$ as a q-analogue o f Catalan numbers $C_{n}=frac1{n+1}binom{2n}{n}$, which is known as the moments of the little q-Jacobi polynomials. We also give several proofs of this q-analogue, in which we use lattice paths, the orthogonal polynomials, or the basic hypergeometric series. We also consider a q-analogue of Schroder Hankel determinants, and give a new proof of Moztkin Hankel determinants using an addition formula for ${}_2F_{1}$.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا