ترغب بنشر مسار تعليمي؟ اضغط هنا

(q,t)-hook formula for Birds and Banners

153   0   0.0 ( 0 )
 نشر من قبل Masao Ishikawa
 تاريخ النشر 2013
  مجال البحث
والبحث باللغة English
 تأليف Masao Ishikawa




اسأل ChatGPT حول البحث

We study Okadas conjecture on $(q,t)$-hook formula of general $d$-complete posets. Proctor classified $d$-complete posets into 15 irreducible ones. We try to give a case-by-case proof of Okadas $(q,t)$-hook formula conjecture using the symmetric functions. Here we give a proof of the conjecture for birds and banners, in which we use Gaspers identity for VWP-series ${}_{12}W_{11}$.



قيم البحث

اقرأ أيضاً

The higher $q,t$-Catalan polynomial $C^{(m)}_n(q,t)$ can be defined combinatorially as a weighted sum of lattice paths contained in certain triangles, or algebraically as a complicated sum of rational functions indexed by partitions of $n$. This pape r proves the equivalence of the two definitions for all $mgeq 1$ and all $nleq 4$. We also give a bijective proof of the joint symmetry property $C^{(m)}_n(q,t)=C^{(m)}_n(t,q)$ for all $mgeq 1$ and all $nleq 4$. The proof is based on a general approach for proving joint symmetry that dissects a collection of objects into chains, and then passes from a joint symmetry property of initial points and terminal points to joint symmetry of the full set of objects. Further consequences include unimodality results and specific formulas for the coefficients in $C^{(m)}_n(q,t)$ for all $mgeq 1$ and all $nleq 4$. We give analogous results for certain rational-slope $q,t$-Catalan polynomials.
We start with a (q,t)-generalization of a binomial coefficient. It can be viewed as a polynomial in t that depends upon an integer q, with combinatorial interpretations when q is a positive integer, and algebraic interpretations when q is the order o f a finite field. These (q,t)-binomial coefficients and their interpretations generalize further in two directions, one relating to column-strict tableaux and Macdonalds ``seventh variation of Schur functions, the other relating to permutation statistics and Hilbert series from the invariant theory of GL_n(F_q).
79 - Guoce Xin , Yingrui Zhang 2021
We give two proofs of the $q,t$-symmetry of the generalized $q,t$-Catalan number $C_{vec{k}}(q,t)$ for $vec{k}=(k_1,k_2,k_3)$. One is by MacMahons partition analysis as we proposed; the other is by a direct bijection.
102 - Yudong Liu , Xiaoxia Wang 2021
Inspired by the recent work on $q$-congruences and the quadratic summation formula of Rahman, we provide some new $q$-supercongruences. By taking $qto 1$ in one of our results, we obtain a new Ramanujan-type supercongruence, which has the same right- hand side as Van Hammes (G.2) supercongruence for $pequiv 1 pmod 4$. We also formulate some related challenging conjectures on supercongruences and $q$-supercongruences.
134 - Pavel Galashin , Thomas Lam 2020
We relate the mixed Hodge structure on the cohomology of open positroid varieties (in particular, their Betti numbers over $mathbb{C}$ and point counts over $mathbb{F}_q$) to Khovanov--Rozansky homology of associated links. We deduce that the mixed H odge polynomials of top-dimensional open positroid varieties are given by rational $q,t$-Catalan numbers. Via the curious Lefschetz property of cluster varieties, this implies the $q,t$-symmetry and unimodality properties of rational $q,t$-Catalan numbers. We show that the $q,t$-symmetry phenomenon is a manifestation of Koszul duality for category $mathcal{O}$, and discuss relations with open Richardson varieties and extension groups of Verma modules.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا