ترغب بنشر مسار تعليمي؟ اضغط هنا

We discuss the indirect detection of the wino dark matter utilizing gamma-ray observations of dwarf spheroidal galaxies (dSphs). After carefully reviewing current limits with particular attention to astrophysical uncertainties, we show prospects of t he wino mass limit in future gamma-ray observation by the Fermi-LAT and the GAMMA-400 telescopes. We find that the improvement of the so-called $J$-factor of both the classical and the ultra-faint dSphs will play a crucial role to cover whole mass range of the wino dark matter. For example, with $delta (log_{10}J) = 0.1$ for both the classical and the ultra-faint dSphs, whole wino dark matter mass range can be covered by 15 years and 10 years data at the Fermi-LAT and GAMMA-400 telescopes, respectively.
We propose a model of dark matter identified with a pseudo-Nambu-Goldstone boson in the dynamical supersymmetry breaking sector in a gauge mediation scenario. The dark matter particles annihilate via a below-threshold narrow resonance into a pair of R-axions each of which subsequently decays into a pair of light leptons. The Breit-Wigner enhancement explains the excess electron and positron fluxes reported in the recent cosmic ray experiments PAMELA, ATIC and PPB-BETS without postulating an overdensity in halo, and the limit on anti-proton flux from PAMELA is naturally evaded.
We point out that annihilation of dark matter in the galactic halo can be enhanced relative to that in the early universe due to a Breit-Wigner tail, if the dark matter annihilates through a pole just below the threshold. This provides a new explanat ion to the boost factor which is suggested by the recent data of the PAMELA, ATIC and PPB-BETS cosmic-ray experiments.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا