ترغب بنشر مسار تعليمي؟ اضغط هنا

Wino Dark Matter and Future dSph Observations

86   0   0.0 ( 0 )
 نشر من قبل Koji Ichikawa
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We discuss the indirect detection of the wino dark matter utilizing gamma-ray observations of dwarf spheroidal galaxies (dSphs). After carefully reviewing current limits with particular attention to astrophysical uncertainties, we show prospects of the wino mass limit in future gamma-ray observation by the Fermi-LAT and the GAMMA-400 telescopes. We find that the improvement of the so-called $J$-factor of both the classical and the ultra-faint dSphs will play a crucial role to cover whole mass range of the wino dark matter. For example, with $delta (log_{10}J) = 0.1$ for both the classical and the ultra-faint dSphs, whole wino dark matter mass range can be covered by 15 years and 10 years data at the Fermi-LAT and GAMMA-400 telescopes, respectively.

قيم البحث

اقرأ أيضاً

(Mini) split supersymmetry explains the observed Higgs mass and evades stringent constraints, while keeping good features of TeV-scale supersymmetry other than the little hierarchy problem. Such scenarios naturally predict thermal wino dark matter wh ose mass is around $3 , {rm TeV}$. Its non-perturbatively enhanced annihilation is a promising target of indirect detection experiments. It is known that identifying the smallest halos is essential for reducing an uncertainty in interpreting indirect detection experiments. Despite its importance, the smallest halos of thermal wino dark matter have not been well understood and thus are investigated in this work. In particular, we remark on two aspects: 1) the neutral wino is in kinetic equilibrium with primordial plasma predominantly through inelastic processes involving the slightly heavier charged wino; and 2) the resultant density contrast shows larger powers at dark acoustic oscillation peaks than in cold dark matter, which is known as an overshooting phenomenon. By taking them into account, we provide a rigorous estimate of the boost factor. Our result facilitates accurately pinning down thermal wino dark matter through vigorous efforts in indirect detection experiments.
If the Dark Matter is the neutral Majorana component of a multiplet which is charged under the electroweak interactions of the Standard Model, its main annihilation channel is into W+W-, while the annihilation into light fermions is helicity suppress ed. As pointed out recently, the radiation of gauge bosons from the initial state of the annihilation lifts the suppression and opens up an s-wave contribution to the cross section. We perform the full tree-level calculation of Dark Matter annihilations, including electroweak bremsstrahlung, in the context of an explicit model corresponding to the supersymmetric wino. We find that the fermion channel can become as important as the di-boson one. This result has significant implications for the predictions of the fluxes of particles originating from Dark Matter annihilations.
The electroweak (EW) sector of the Minimal Supersymmetric Standard Model (MSSM) can account for a variety of experimental data. In particular, it can explain the persistent 3-4 sigma discrepancy between the experimental result for the anomalous magne tic moment of the muon and its Standard Model (SM) prediction. The lightest supersymmetric particle (LSP), which we take as the lightest neutralino, can furthermore account for the observed Dark Matter (DM) content of the universe via coannihilation with the next-to-LSP (NLSP), while being in agreement with negative results from Direct Detection (DD) experiments. Concerning the unsuccessful searches for EW superparticles at the LHC, owing to relatively small production cross-sections, a comparably light EW sector of the MSSM is in full agreement with the experimental data. The DM relic density can fully be explained by a mixed bino/wino LSP. Here we take the relic density as an upper bound, which opens up the possibility of wino and higgsino DM. We first analyze which mass ranges of neutralinos, charginos and scalar leptons are in agreement with all experimental data, including relevant LHC searches. We find roughly an upper limit of ~ 600 GeV for the LSP and NLSP masses. In a second step we assume that the new result of the Run 1 of the MUON G-2 collaboration at Fermilab yields a precision comparable to the existing experimental result with the same central value. We analyze the potential impact of the combination of the Run 1 data with the existing muon g-2 data on the allowed MSSM parameter space. We find that in this case the upper limits on the LSP and NLSP masses are substantially reduced by roughly 100 GeV. We interpret these upper bounds in view of future HL-LHC EW searches as well as future high-energy electron-positron colliders, such as the ILC or CLIC.
String/M theory compactifications with low energy supersymmetry tend to predict that dark matter has two components: axions and WIMPs cite{1004.5138,1204.2795}. In accord with this, we show that the tentative 130 GeV gamma-line signal reported in cit e{1204.2797} can be interpreted as arising from the annihilation of 145 GeV mass, Wino-like WIMPs into a Z-boson and a photon. In this context, the signal implies a second component of dark matter which we interpret as being composed of axions - the relative Wino/Axion abundances being approximately equal. Further predictions are implied: signals in both diffuse and monochromatic photons from dwarf spheroidal galaxies; monochromatic photons with energy 145 GeV; for the LHC, the Higgs boson mass has been predicted in this framework cite{1112.1059}, and the current Higgs limits provide interesting constraints on the mass of the Gluino.
The equation of state for a degenerate gas of fermions at zero temperature in the non relativistic case is a polytrope, i.e. $p=gamma rho^{5/3}/m_F^{8/3}$. If dark matter is modelled by such non interacting fermion, this dependence in the mass of the fermion $m_F$ explains why if dark matter is very heavy the effective pressure of dark matter is negligible. Nevertheless, if the mass of the dark matter is very small, the effective pressure can be very large, and thus, a system of self-gravitating fermions can be formed. In this work we model the dark matter halo of the Milky-Way by solving the Tolman-Oppenheimer-Volkoff equations, with the equation of state for a partially degenerate ultralight non interacting fermion. It is found that in order to fit its rotational velocity curve of the Milky Way, the mass of the fermion should be in the range $29 ~mbox{eV} < m_F < 33~$eV. Moreover, the central density is constrained to be in the range of $46 < rho_0<61$ GeV/cm$^3$. The fermionic dark matter halo has a very different profile as compared with the standard Navarro-Frenk-White profile, thus, the possible indirect signals for annihilating dark matter may change by orders of magnitude. We found bounds for the annihilation cross section in this case by using the Saggitarius A* spectral energy distribution. Those limits are very strong confirming the idea that the lighter the dark matter particle is, the darkest it becomes.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا