ترغب بنشر مسار تعليمي؟ اضغط هنا

Context. The Crab nebula has been used as a celestial calibration source of the X-ray flux and spectral shape for many years by X-ray astronomy missions. However, the object is often too bright for current and future missions equipped with instrument s with improved sensitivity. Aims. We use G21.5-0.9 as a viable, fainter substitute to the Crab, which is another pulsar-wind nebula with a time-constant powerlaw spectrum with a flux of a few milli Crab in the X-ray band. Using this source, we conduct a cross-calibration study of the instruments onboard currently active observatories: Chandra ACIS, Suzaku XIS, Swift XRT, XMM-Newton EPIC (MOS and pn) for the soft-band, and INTEGRAL IBIS-ISGRI, RXTE PCA, and Suzaku HXD-PIN for the hard band. Methods. We extract spectra from all the instruments and fit them under the same astrophysical assumptions. We compare the spectral parameters of the G21.5-0.9 model: power-law photon index, H-equivalent column density of the interstellar photoelectric absorption, flux in the soft (2-8 keV) or hard (15-50 keV) energy band. Results. We identify the systematic differences in the best-fit parameter values unattributable to the statistical scatter of the data alone. We interpret these differences as due to residual cross-calibration problems. The differences can be as large as 20% and 9% for the soft-band flux and power-law index, respectively, and 46% for the hard-band flux. The results are plotted and tabulated as a useful reference for future calibration and scientific studies using multiple missions.
We conducted a target of opportunity X-ray observation of the classical nova V458 Vulpeculae 88 days after the explosion using the Suzaku satellite. With a 20 ks exposure, the X-ray Imaging Spectrometer detected X-ray emission significantly harder th an typical super-soft source emission. The X-ray spectrum shows K lines from N, Ne, Mg, Si, and S, and L-series emission from Fe in highly ionized states. The spectrum can be described by a single temperature (0.64 keV) thin thermal plasma model in collisional equilibrium with a hydrogen-equivalent extinction column density of ~3e21/cm2, a flux of ~1e-12 erg/s/cm2, and a luminosity of ~6e34 erg/s in the 0.3-3.0 keV band at an assumed distance of 13 kpc. We found a hint of an enhancement of N and deficiencies of O and Fe relative to other metals. The observed X-ray properties can be interpreted as the emission arising from shocks of ejecta from an ONe-type nova.
95 - Jun Yokogawa 2003
We made 22 observations on the Small Magellanic Cloud (SMC) and covered full regions by the end of the ASCA mission. We detected 106 discrete sources with a criterion of S/N > 5 and performed systematic analyses on all of the sources. We determined t he source positions with an ~40 error radius (90% confidence) for sources detected in the central 20 radius of the GIS. We detected coherent pulsations from 17 sources. Among them, eight were newly discovered during this study. We classified most of these pulsars as X-ray binary pulsars (XBPs) based on their properties, such as the flux variability and the existence of an optical counterpart. We detected X-ray emission from eight supernova remnants (SNRs). Among them, five SNRs showed emission lines in their spectra, hence we regarded the five as thermal SNRs. We found that XBPs and thermal SNRs in the SMC can be clearly separated by their spectral hardness ratio. Applying this empirical law to faint (thus unclassified) sources, we found 19 XBP candidates and four thermal SNR candidates. We also found several tens of candidates for active galactic nuclei, both from the hardness ratio and the logN--logS relation of extragalactic sources. Based on these ASCA results and further information from other sattelites, we compiled comprehensive catalogues of discrete X-ray sources in the Small Magellanic Cloud. Using the catalogues, we derived the spatial distributions of XBPs and SNRs. XBPs and SNRs were found to be concentrated in the main body and eastern wing, which resembles the distribution of young stars with ages of ~2e7yr. By comparing the source populations in the SMC and our Galaxy, we suggest that the star-forming rate (per unit mass) in the SMC was much higher than the Galaxy 1e7yr ago. We also discuss the recent change of the star-forming rate in the SMC.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا