ﻻ يوجد ملخص باللغة العربية
We made 22 observations on the Small Magellanic Cloud (SMC) and covered full regions by the end of the ASCA mission. We detected 106 discrete sources with a criterion of S/N > 5 and performed systematic analyses on all of the sources. We determined the source positions with an ~40 error radius (90% confidence) for sources detected in the central 20 radius of the GIS. We detected coherent pulsations from 17 sources. Among them, eight were newly discovered during this study. We classified most of these pulsars as X-ray binary pulsars (XBPs) based on their properties, such as the flux variability and the existence of an optical counterpart. We detected X-ray emission from eight supernova remnants (SNRs). Among them, five SNRs showed emission lines in their spectra, hence we regarded the five as thermal SNRs. We found that XBPs and thermal SNRs in the SMC can be clearly separated by their spectral hardness ratio. Applying this empirical law to faint (thus unclassified) sources, we found 19 XBP candidates and four thermal SNR candidates. We also found several tens of candidates for active galactic nuclei, both from the hardness ratio and the logN--logS relation of extragalactic sources. Based on these ASCA results and further information from other sattelites, we compiled comprehensive catalogues of discrete X-ray sources in the Small Magellanic Cloud. Using the catalogues, we derived the spatial distributions of XBPs and SNRs. XBPs and SNRs were found to be concentrated in the main body and eastern wing, which resembles the distribution of young stars with ages of ~2e7yr. By comparing the source populations in the SMC and our Galaxy, we suggest that the star-forming rate (per unit mass) in the SMC was much higher than the Galaxy 1e7yr ago. We also discuss the recent change of the star-forming rate in the SMC.
The Advanced Satellite for Cosmology and Astrophysics (ASCA) has made multiple observations of the Small Magellanic Cloud (SMC). X-ray mosaic images in the soft (0.7--2.0 keV) and hard (2.0--7.0 keV) bands are separately constructed, and the latter p
We have imaged the entire Small Magellanic Cloud (SMC), one of the two nearest star-forming dwarf galaxies, in all seven IRAC and MIPS bands. The low mass and low metallicity (1/6 solar) of the SMC make it the best local analog for primitive galaxies
Using Chandra, XMM-Newton, and optical photometric catalogs we study the young X-ray binary (XRB) populations of the Small Magellanic Cloud. We find that the Be/X-ray binaries (Be-XRBs) are observed in regions with star formation rate bursts ~25-60 M
The orbital motion of a neutron star about its optical companion presents a window through which to study the orbital parameters of that binary system. This has been used extensively in the Milky Way to calculate these parameters for several high-mas
Many of the high mass X-ray binaries (HMXRBs) discovered in recent years in our Galaxy are characterized by a high absorption, most likely intrinsic to the system, which hampers their detection at the softest X-ray energies. We have undertaken a sear