ترغب بنشر مسار تعليمي؟ اضغط هنا

The chemistry of the diffuse interstellar medium is driven by the combined influences of cosmic rays, ultraviolet (UV) radiation, and turbulence. Previously detected at the outer edges of photodissociation regions (PDRs) and formed from the reaction of C+ and OH, CO+ is the main chemical precursor of HCO+ and CO in a thermal, cosmic-ray, and UV-driven chemistry. Our aim was to test whether the thermal cosmic-ray and UV-driven chemistry is producing CO in diffuse interstellar molecular gas through the intermediate formation of CO+ We searched for CO+ absorption with the Atacama Large Millimeter Array (ALMA) toward two quasars with known Galactic foreground absorption from diffuse interstellar gas, J1717-3342 and J1744-3116, targeting the two strongest hyperfine components of the J=2-1 transition near 236 GHz. We could not detect CO+ but obtained sensitive upper limits toward both targets. The derived upper limits on the CO+ column densities represent about 4% of the HCO+ column densities. The corresponding upper limit on the CO+ abundance relative to H2 is <1.2 x 10^{-10}. The non-detection of CO+ confirms that HCO+ is mainly produced in the reaction between oxygen and carbon hydrides, CH2+ or CH3+ , induced by suprathermal processes, while CO+ and HOC+ result from reactions of C+ with OH and H2O. The densities required to form CO molecules at low extinction are consistent with this scheme.
137 - Emeric Bron 2020
The ionization fraction plays a key role in the physics and chemistry of the neutral interstellar medium, from controlling the coupling of the gas to the magnetic field to allowing fast ion-neutral reactions that drive interstellar chemistry. Most es timations of the ionization fraction have relied on deuterated species such as DCO+, whose detection is limited to dense cores representing an extremely small fraction of the volume of the giant molecular clouds they are part of. As large field-of-view hyperspectral maps become available, new tracers may be found. We search for the best observable tracers of the ionization fraction based on a grid of astrochemical models. We build grids of models that sample randomly a large space of physical conditions (unobservable quantities such as gas density, temperature, etc.) and compute the corresponding observables (line intensities, column densities) and the ionization fraction. We estimate the predictive power of each potential tracer by training a Random Forest model to predict the ionization fraction from that tracer, based on these model grids. In both translucent medium and cold dense medium conditions, several observable tracers with very good predictive power for the ionization fraction are found. Several tracers in cold dense medium conditions are found to be better and more widely applicable than the traditional DCO+/HCO+ ratio. We also provide simpler analytical fits for estimating the ionization fraction from the best tracers, and for estimating the associated uncertainties. We discuss the limitations of the present study and select a few recommended tracers in both types of conditions. The method presented here is very general and can be applied to the measurement of any other quantity of interest (cosmic ray flux, elemental abundances, etc.) from any type of model (PDR models, time-dependent chemical models, etc.). (abridged)
68 - Antoine Roueff 2020
CO isotopologue transitions are routinely observed in molecular clouds to probe the column density of the gas, the elemental ratios of carbon and oxygen, and to trace the kinematics of the environment. We aim at estimating the abundances, excitation temperatures, velocity field and velocity dispersions of the three main CO isotopologues towards a subset of the Orion B molecular cloud. We use the Cramer Rao Bound (CRB) technique to analyze and estimate the precision of the physical parameters in the framework of local-thermodynamic-equilibrium excitation and radiative transfer with an additive white Gaussian noise. We propose a maximum likelihood estimator to infer the physical conditions from the 1-0 and 2-1 transitions of CO isotopologues. Simulations show that this estimator is unbiased and efficient for a common range of excitation temperatures and column densities (Tex > 6 K, N > 1e14 - 1e15 cm-2). Contrary to the general assumptions, the different CO isotopologues have distinct excitation temperatures, and the line intensity ratios between different isotopologues do not accurately reflect the column density ratios. We find mean fractional abundances that are consistent with previous determinations towards other molecular clouds. However, significant local deviations are inferred, not only in regions exposed to UV radiation field but also in shielded regions. These deviations result from the competition between selective photodissociation, chemical fractionation, and depletion on grain surfaces. We observe that the velocity dispersion of the C18O emission is 10% smaller than that of 13CO. The substantial gain resulting from the simultaneous analysis of two different rotational transitions of the same species is rigorously quantified. The CRB technique is a promising avenue for analyzing the estimation of physical parameters from the fit of spectral lines.
The far-infrared (FIR) regime is one of the few wavelength ranges where no astronomical data with sub-arcsecond spatial resolution exist. Neither of the medium-term satellite projects like SPICA, Millimetron nor O.S.T. will resolve this malady. For m any research areas, however, information at high spatial and spectral resolution in the FIR, taken from atomic fine-structure lines, from highly excited carbon monoxide (CO), light hydrids, and especially from water lines would open the door for transformative science. A main theme will be to trace the role of water in proto-planetary disks, to observationally advance our understanding of the planet formation process and, intimately related to that, the pathways to habitable planets and the emergence of life. Furthermore, key observations will zoom into the physics and chemistry of the star-formation process in our own Galaxy, as well as in external galaxies. The FIR provides unique tools to investigate in particular the energetics of heating, cooling and shocks. The velocity-resolved data in these tracers will reveal the detailed dynamics engrained in these processes in a spatially resolved fashion, and will deliver the perfect synergy with ground-based molecular line data for the colder dense gas.
The radiative and mechanical interaction of stars with their environment drives the evolution of the ISM and of galaxies as a whole. The far-IR emission (lambda ~30 to 350 microns) from atoms and molecules dominates the cooling of the warm gas in the neutral ISM, the material that ultimately forms stars. Far-IR lines are thus the most sensitive probes of stellar feedback processes, and allow us to quantify the deposition and cycling of energy in the ISM. While ALMA (in the (sub)mm) and JWST (in the IR) provide astonishing sub-arcsecond resolution images of point sources and their immediate environment, they cannot access the main interstellar gas coolants, nor are they designed to image entire star-forming regions (SFRs). Herschel far-IR photometric images of the interstellar dust thermal emission revealed the ubiquitous large-scale filamentary structure of SFRs, their mass content, and the location of thousands of prestellar cores and protostars. These images, however, provide a static view of the ISM: not only they dont constrain the cloud dynamics, moreover they cannot reveal the chemical composition and energy transfer within the cloud, thus giving little insight into the regulation process of star formation by stellar feedback. In this white paper we emphasize the need of a space telescope with wide-field spectral-imaging capabilities in the critical far-IR domain.
The extremely young Class 0 object B1b-S and the first hydrostatic core (FSHC) candidate, B1b-N, provide a unique opportunity to study the chemical changes produced in the elusive transition from the prestellar core to the protostellar phase. We pres ent 40x70 images of Barnard 1b in the 13CO 1->0, C18O 1->0, NH2D 1_{1,1}a->1_{0,1}s, and SO 3_2->2_1 lines obtained with the NOEMA interferometer. The observed chemical segregation allows us to unveil the physical structure of this young protostellar system down to scales of ~500au. The two protostellar objects are embedded in an elongated condensation, with a velocity gradient of ~0.2-0.4 m s^{-1} au^{-1} in the east-west direction, reminiscent of an axial collapse. The NH2D data reveal cold and dense pseudo-disks (R~500-1000 au) around each protostar. Moreover, we observe evidence of pseudo-disk rotation around B1b-S. We do not see any signature of the bipolar outflows associated with B1b-N and B1b-S, which were previously detected in H2CO and CH3OH, in any of the imaged species. The non-detection of SO constrains the SO/CH3OH abundance ratio in the high-velocity gas.
The nature of turbulence in molecular clouds is one of the key parameters that control star formation efficiency: compressive motions, as opposed to solenoidal motions, can trigger the collapse of cores, or mark the expansion of Hii regions. We try t o observationally derive the fractions of momentum density ($rho v$) contained in the solenoidal and compressive modes of turbulence in the Orion B molecular cloud and relate these fractions to the star formation efficiency in the cloud. The implementation of a statistical method developed by Brunt & Federrath (2014), applied to a $^{13}$CO(J=1-0) datacube obtained with the IRAM-30m telescope, allows us to retrieve 3-dimensional quantities from the projected quantities provided by the observations, yielding an estimate of the compressive versus solenoidal ratio in various regions of the cloud. Despite the Orion B molecular cloud being highly supersonic (mean Mach number $sim$ 6), the fractions of motion in each mode diverge significantly from equipartition. The clouds motions are on average mostly solenoidal (excess > 8 % with respect to equipartition), which is consistent with its low star formation rate. On the other hand, the motions around the main star-forming regions (NGC 2023 and NGC 2024) prove to be strongly compressive. We have successfully applied to observational data a method that was so far only tested on simulations, and have shown that there can be a strong intra-cloud variability of the compressive and solenoidal fractions, these fractions being in turn related to the star formation efficiency. This opens a new possibility for star-formation diagnostics in galactic molecular clouds.
We report additional detections of the chloronium molecular ion, H$_2$Cl$^+$, toward four bright submillimeter continuum sources: G29.96, W49N, W51, and W3(OH). With the use of the HIFI instrument on the Herschel Space Observatory, we observed the $2 _{12}-1_{01}$ transition of ortho-H$_2^{35}$Cl$^+$ at 781.627 GHz in absorption toward all four sources. Much of the detected absorption arises in diffuse foreground clouds that are unassociated with the background continuum sources and in which our best estimates of the $N({rm H_2Cl^+})/N({rm H})$ ratio lie in the range $(0.9 - 4.8) times 10^{-9}$. These chloronium abundances relative to atomic hydrogen can exceed the predictions of current astrochemical models by up to a factor of 5. Toward W49N, we have also detected the $2_{12}-1_{01}$ transition of ortho-H$_2^{37}$Cl$^+$ at 780.053 GHz and the $1_{11}-0_{00}$ transition of para-H$_2^{35}$Cl$^+$ at 485.418 GHz. These observations imply $rm H_2^{35}Cl^+/H_2^{37}Cl^+$ column density ratios that are consistent with the solar system $^{35}$Cl/$^{37}$Cl isotopic ratio of 3.1, and chloronium ortho-to-para ratios consistent with 3, the ratio of spin statistical weights.
121 - Benjamin Godard 2010
Aims. The comparative study of several molecular species at the origin of the gas phase chemistry in the diffuse interstellar medium (ISM) is a key input in unraveling the coupled chemical and dynamical evolution of the ISM. Methods. The lowest rotat ional lines of HCO+, HCN, HNC, and CN were observed at the IRAM-30m telescope in absorption against the lambda 3 mm and lambda 1.3 mm continuum emission of massive star-forming regions in the Galactic plane. The absorption lines probe the gas over kiloparsecs along these lines of sight. The excitation temperatures of HCO+ are inferred from the comparison of the absorptions in the two lowest transitions. The spectra of all molecular species on the same line of sight are decomposed into Gaussian velocity components. Most appear in all the spectra of a given line of sight. For each component, we derived the central opacity, the velocity dispersion, and computed the molecular column density. We compared our results to the predictions of UV-dominated chemical models of photodissociation regions (PDR models) and to those of non-equilibrium models in which the chemistry is driven by the dissipation of turbulent energy (TDR models). Results. The molecular column densities of all the velocity components span up to two orders of magnitude. Those of CN, HCN, and HNC are linearly correlated with each other with mean ratios N(HCN)/N(HNC) = 4.8 $pm$ 1.3 and N(CN)/N(HNC) = 34 $pm$ 12, and more loosely correlated with those of HCO+, N(HNC)/N(HCO+) = 0.5 $pm$ 0.3, N(HCN)/N(HCO+) = 1.9 $pm$ 0.9, and N(CN)/N(HCO+) = 18 $pm$ 9. These ratios are similar to those inferred from observations of high Galactic latitude lines of sight, suggesting that the gas sampled by absorption lines in the Galactic plane has the same chemical properties as that in the Solar neighbourhood. The FWHM of the Gaussian velocity components span the range 0.3 to 3 km s-1 and those of the HCO+ lines are found to be 30% broader than those of CN-bearing molecules. The PDR models fail to reproduce simultaneously the observed abundances of the CN-bearing species and HCO+, even for high-density material (100 cm-3 < nH < 104 cm-3). The TDR models, in turn, are able to reproduce the observed abundances and abundance ratios of all the analysed molecules for the moderate gas densities (30 cm-3 < nH < 200 cm-3) and the turbulent energy observed in the diffuse interstellar medium. Conclusions. Intermittent turbulent dissipation appears to be a promising driver of the gas phase chemistry of the diffuse and translucent gas throughout the Galaxy. The details of the dissipation mechanisms still need to be investigated.
163 - Maryvonne Gerin 2010
We report the detection of absorption lines by the reactive ions OH+, H2O+ and H3O+ along the line of sight to the submillimeter continuum source G10.6$-$0.4 (W31C). We used the Herschel HIFI instrument in dual beam switch mode to observe the ground state rotational transitions of OH+ at 971 GHz, H2O+ at 1115 and 607 GHz, and H3O+ at 984 GHz. The resultant spectra show deep absorption over a broad velocity range that originates in the interstellar matter along the line of sight to G10.6$-$0.4 as well as in the molecular gas directly associated with that source. The OH+ spectrum reaches saturation over most velocities corresponding to the foreground gas, while the opacity of the H2O+ lines remains lower than 1 in the same velocity range, and the H3O+ line shows only weak absorption. For LSR velocities between 7 and 50 kms$^{-1}$ we estimate total column densities of $N$(OH+) $> 2.5 times 10^{14}$ cm$^{-2}$, $N$(H2O+) $sim 6 times 10^{13}$ cm$^{-2}$ and $N$(H3O+) $sim 4.0 times 10^{13}$ cm$^{-2}$. These detections confirm the role of O$^+$ and OH$^+$ in initiating the oxygen chemistry in diffuse molecular gas and strengthen our understanding of the gas phase production of water. The high ratio of the OH+ by the H2O+ column density implies that these species predominantly trace low-density gas with a small fraction of hydrogen in molecular form.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا