ترغب بنشر مسار تعليمي؟ اضغط هنا

74 - T. J. Hobbs , Mary Alberg , 2014
Determining the nonperturbative $sbar{s}$ content of the nucleon has attracted considerable interest and been the subject of numerous experimental searches. These measurements used a variety of reactions and place important limits on the vector form factors observed in parity-violating (PV) elastic scattering and the parton distributions determined by deep inelastic scattering (DIS). In spite of this progress, attempts to relate information obtained from elastic and DIS experiments have been sparse. To ameliorate this situation, we develop an interpolating model using light-front wave functions capable of computing both DIS and elastic observables. This framework is used to show that existing knowledge of DIS places significant restrictions on our wave functions. The result is that the predicted effects of nucleon strangeness on elastic observables are much smaller than those tolerated by direct fits to PV elastic scattering data alone. Using our model, we find $-0.024 le mu_s le 0.035$, and $-0.137 le rho^D_s le 0.081$ for the strange contributions to the nucleon magnetic moment and charge radius. The model we develop also independently predicts the nucleons strange spin content $Delta s$ and scalar density $langle N| bar{s}s | N rangle$, and for these we find agreement with previous determinations.
In a recent Comment [arXiv:1206.3671] on our calculation of the pion contributions to the self-energy of the nucleon [arXiv:1201.4184], Ji, Melnitchouk and Thomas (JMT) correctly state that we obtain the same result as given by the pseudovector (PV) theory. We point out that this result is expected by the equivalence theorem, since our pion-nucleon effective theory puts the intermediate nucleon on its mass shell. We make no claim that pseudoscalar (PS) and pseudovector interactions are equivalent in general. JMT also argue that our theory will not give the correct PV result for the pion momentum distribution $f^N_{pi}$. We note that the discrepancies are much smaller than the uncertainties due to $pi N$ form factors. To summarize, nothing in the Comment by JMT changes the conclusions or numerical results of our work in any substantive way.
We have calculated the Bjorken-x dependence of the kaon and pion valence quark distributions in a statistical model. Each meson is described by a Fock state expansion in terms of quarks, antiquarks and gluons. Although Drell-Yan experiments have meas ured the pion valence quark distributions directly, the kaon valence quark distributions have only been deduced from the measurement of the ratio $bar{u}_K(x)/bar{u}_pi(x)$. We show that, using no free parameters, our model predicts the decrease of this ratio with increasing x.
Deep Inelastic Scattering and Drell-Yan experiments have measured a light flavor asymmetry in the proton sea. The excess of dbar over ubar quarks can be understood in many models, but the ratio dbar(x)/ubar(x) measured by Fermilab E866 has not been s uccessfully described. Fermilab E-906 will probe the kinematic dependence of this ratio with better resolution and extend it to higher x. We have developed a hybrid model that includes both perturbative and non-perturbative contributions to the proton sea. A meson cloud formalism is used to represent the non-perturbative fluctuation of the proton into meson-baryon states. We include perturbative processes by using a statistical model that uses Fock states of quarks, antiquarks and gluons to represent the parton distributions of the bare hadrons in the meson cloud. We compare our results to the E866 data.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا