ترغب بنشر مسار تعليمي؟ اضغط هنا

36 - Martin van Hecke 2021
The response, pathways and memory effects of cyclically driven complex media can be captured by hysteretic elements called hysterons. Here we demonstrate the profound impact of hysteron interactions on pathways and memory. Specifically, while the Pre isach model of independent hysterons features a restricted class of pathways which always satisfy return point memory, we show that three interacting hysterons generate more than 15,000 transition graphs, with most violating return point memory and having features completely distinct from the Preisach model. Exploring these opens a route to designer pathways and information processing in complex matter.
The nonlinear response of driven complex materials, disordered magnets, amorphous media, crumpled sheets, features intricate transition pathways where the system repeatedly hops between metastable states. Such pathways encode memory effects and may a llow information processing, yet tools are lacking to experimentally observe and control these pathways, and their full breadth has not been explored. Here we introduce compression of corrugated elastic sheets to precisely observe and manipulate their full, multi-step pathways, which are reproducible, robust, and controlled by geometry. We show how manipulation of the boundaries allows to elicit multiple targeted pathways from a single sample. In all cases, each state in the pathway can be encoded by the binary state of material bits called hysterons, and the strength of their interactions plays a crucial role. In particular, as function of increasing interaction strength, we observe Preisach pathways, expected in systems of independently switching hysterons, scrambled pathways that evidence hitherto unexplored interactions between these material bits, and accumulator pathways which leverage these interactions to perform an elementary computation. Our work opens a route to probe, manipulate and understand complex pathways, impacting future applications in soft robotics and information processing in materials.
Deformations of conventional solids are described via elasticity, a classical field theory whose form is constrained by translational and rotational symmetries. However, flexible metamaterials often contain an additional approximate symmetry due to t he presence of a designer soft strain pathway. Here we show that low energy deformations of designer dilational metamaterials will be governed by a novel field theory, conformal elasticity, in which the nonuniform, nonlinear deformations observed under generic loads correspond with the well-studied conformal maps. We validate this approach using experiments and finite element simulations and further show that such systems obey a holographic bulk-boundary principle, which enables an unprecedented analytic method to predict and control nonuniform, nonlinear deformations. This work both presents a novel method of precise deformation control and demonstrates a general principle in which mechanisms can generate special classes of soft deformations.
Mechanism - collections of rigid elements coupled by perfect hinges which exhibit a zero-energy motion -- motivate the design of a variety of mechanical metamaterials. We significantly enlarge this design space by considering pseudo-mechanisms, colle ctions of elastically coupled elements that exhibit motions with very low energy costs. We show that their geometric design generally is distinct from those of true mechanisms, thus opening up a large and virtually unexplored design space. We further extend this space by designing building blocks with bistable and tristable energy landscapes, realize these by 3D printing, and show how these form unit cells for multistable metamaterials.
Traditional origami starts from flat surfaces, leading to crease patterns consisting of Euclidean vertices. However, Euclidean vertices are limited in their folding motions, are degenerate, and suffer from misfolding. Here we show how non-Euclidean 4 -vertices overcome these limitations by lifting this degeneracy, and that when the elasticity of the hinges is taken into account, non-Euclidean 4-vertices permit higher-order multistability. We harness these advantages to design an origami inverter that does not suffer from misfolding and to physically realize a tristable vertex.
Architectural transformations play a key role in the evolution of complex systems, from design algorithms for metamaterials to flow and plasticity of disordered media. Here, we develop a general framework for the evolution of the linear mechanical re sponse of network structures under discrete architectural transformations via sequential removal and addition of elastic elements. We focus on a class of spatially complex metamaterials, consisting of triangular building blocks. Rotations of these building blocks, corresponding to removing and adding elastic elements, introduce (topological) architectural defects. We show that the metamaterials states of self stress play a crucial role, and that the mutually exclusive self stress states between two different network architectures span the difference in their mechanical response. For our class of metamaterials, we identify a localized representation of these states of self stress, which allows us to capture the evolving response. We use our insights to understand the unusual stress-steering behaviour of topological defects.
Four rigid panels connected by hinges that meet at a point form a 4-vertex, the fundamental building block of origami metamaterials. Here we show how the geometry of 4-vertices, given by the sector angles of each plate, affects their folding behavior . For generic vertices, we distinguish three vertex types and two subtypes. We establish relationships based on the relative sizes of the sector angles to determine which folds can fully close and the possible mountain-valley assignments. Next, we consider what occurs when sector angles or sums thereof are set equal, which results in 16 special vertex types. One of these, flat-foldable vertices, has been studied extensively, but we show that a wide variety of qualitatively different folding motions exist for the other 15 special and 3 generic types. Our work establishes a straightforward set of rules for understanding the folding motion of both generic and special 4-vertices and serves as a roadmap for designing origami metamaterials.
By calculating the linear response of packings of soft frictionless discs to quasistatic external perturbations, we investigate the critical scaling behavior of their elastic properties and non-affine deformations as a function of the distance to jam ming. Averaged over an ensemble of similar packings, these systems are well described by elasticity, while in single packings we determine a diverging length scale $ell^*$ up to which the response of the system is dominated by the local packing disorder. This length scale, which we observe directly, diverges as $1/Delta z$, where $Delta z$ is the difference between contact number and its isostatic value, and appears to scale identically to the length scale which had been introduced earlier in the interpretation of the spectrum of vibrational modes. It governs the crossover from isostatic behavior at the small scale to continuum behavior at the large scale; indeed we identify this length scale with the coarse graining length needed to obtain a smooth stress field. We characterize the non-affine displacements of the particles using the emph{displacement angle distribution}, a local measure for the amount of relative sliding, and analyze the connection between local relative displacements and the elastic moduli.
The transition from phase chaos to defect chaos in the complex Ginzburg-Landau equation (CGLE) is related to saddle-node bifurcations of modulated amplitude waves (MAWs). First, the spatial period P of MAWs is shown to be limited by a maximum P_SN wh ich depends on the CGLE coefficients; MAW-like structures with period larger than P_SN evolve to defects. Second, slowly evolving near-MAWs with average phase gradients $ u approx 0$ and various periods occur naturally in phase chaotic states of the CGLE. As a measure for these periods, we study the distributions of spacings p between neighboring peaks of the phase gradient. A systematic comparison of p and P_SN as a function of coefficients of the CGLE shows that defects are generated at locations where p becomes larger than P_SN. In other words, MAWs with period P_SN represent ``critical nuclei for the formation of defects in phase chaos and may trigger the transition to defect chaos. Since rare events where p becomes sufficiently large to lead to defect formation may only occur after a long transient, the coefficients where the transition to defect chaos seems to occur depend on system size and integration time. We conjecture that in the regime where the maximum period P_SN has diverged, phase chaos persists in the thermodynamic limit.
The mechanism for transitions from phase to defect chaos in the one-dimensional complex Ginzburg-Landau equation (CGLE) is presented. We introduce and describe periodic coherent structures of the CGLE, called Modulated Amplitude Waves (MAWs). MAWs of various period P occur naturally in phase chaotic states. A bifurcation study of the MAWs reveals that for sufficiently large period P, pairs of MAWs cease to exist via a saddle-node bifurcation. For periods beyond this bifurcation, incoherent near-MAW structures occur which evolve toward defects. This leads to our main result: the transition from phase to defect chaos takes place when the periods of MAWs in phase chaos are driven beyond their saddle-node bifurcation.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا