ترغب بنشر مسار تعليمي؟ اضغط هنا

Pathways of diffusion observed in real-world systems often require stochastic processes going beyond first-order Markov models, as implicitly assumed in network theory. In this work, we focus on second-order Markov models, and derive an analytical ex pression for the effect of memory on the spectral gap and thus, equivalently, on the characteristic time needed for the stochastic process to asymptotically reach equilibrium. Perturbation analysis shows that standard first-order Markov models can either overestimate or underestimate the diffusion rate of flows across the modular structure of a system captured by a second-order Markov network. We test the theoretical predictions on a toy example and on numerical data, and discuss their implications for network theory, in particular in the case of temporal or multiplex networks.
In social systems, people communicate with each other and form groups based on their interests. The pattern of interactions, the network, and the ideas that flow on the network naturally evolve together. Researchers use simple models to capture the f eedback between changing network patterns and ideas on the network, but little is understood about the role of past events in the feedback process. Here we introduce a simple agent-based model to study the coupling between peoples ideas and social networks, and better understand the role of history in dynamic social networks. We measure how information about ideas can be recovered from information about network structure and, the other way around, how information about network structure can be recovered from information about ideas. We find that it is in general easier to recover ideas from the network structure than vice versa.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا