ترغب بنشر مسار تعليمي؟ اضغط هنا

A posteriori probability (APP) and max-log APP detection is widely used in soft-input soft-output detection. In contrast to bijective modulation schemes, there are important differences when applying these algorithms to non-bijective symbol constella tions. In this letter the main differences are highlighted.
Besides mimicking bio-chemical and multi-scale communication mechanisms, molecular communication forms a theoretical framework for virus infection processes. Towards this goal, aerosol and droplet transmission has recently been modeled as a multiuser scenario. In this letter, the infection performance is evaluated by means of a mutual information analysis, and by an even simpler probabilistic performance measure which is closely related to absorbed viruses. The so-called infection rate depends on the distribution of the channel input events as well as on the transition probabilities between channel input and output events. The infection rate is investigated analytically for five basic discrete memoryless channel models. Numerical results for the transition probabilities are obtained by Monte Carlo simulations for pathogen-laden particle transmission in four typical indoor environments: two-person office, corridor, classroom, and bus. Particle transfer contributed significantly to infectious diseases like SARS-CoV-2 and influenza.
This contribution exploits the duality between a viral infection process and macroscopic air-based molecular communication. Airborne aerosol and droplet transmission through human respiratory processes is modeled as an instance of a multiuser molecul ar communication scenario employing respiratory-event-driven molecular variable-concentration shift keying. Modeling is aided by experiments that are motivated by a macroscopic air-based molecular communication testbed. In artificially induced coughs, a saturated aqueous solution containing a fluorescent dye mixed with saliva is released by an adult test person. The emitted particles are made visible by means of optical detection exploiting the fluorescent dye. The number of particles recorded is significantly higher in test series without mouth and nose protection than in those with a wellfitting medical mask. A simulation tool for macroscopic molecular communication processes is extended and used for estimating the transmission of infectious aerosols in different environments. Towards this goal, parameters obtained through self experiments are taken. The work is inspired by the recent outbreak of the coronavirus pandemic.
In this work, spatial diversity techniques in the area of multiple-input multiple-output (MIMO) diffusion-based molecular communications (DBMC) are investigated. For transmitter-side spatial coding, Alamouti-type coding and repetition MIMO coding are proposed and analyzed. At the receiver-side, selection diversity, equal-gain combining, and maximum-ratio combining are studied as combining strategies. Throughout the numerical analysis, a symmetrical $2times 2$ MIMO-DBMC system is assumed. Furthermore, a trained artificial neural network is utilized to acquire the channel impulse responses. The numerical analysis demonstrates that it is possible to achieve a diversity gain in molecular communications. In addition, it is shown that for MIMO-DBMC systems repetition MIMO coding is superior to Alamouti-type coding.
This paper studies spatial diversity techniques applied to multiple-input multiple-output (MIMO) diffusion-based molecular communications (DBMC). Two types of spatial coding techniques, namely Alamouti-type coding and repetition MIMO coding are sugge sted and analyzed. In addition, we consider receiver-side equal-gain combining, which is equivalent to maximum-ratio combining in symmetrical scenarios. For numerical analysis, the channel impulse responses of a symmetrical $2 times 2$ MIMO-DBMC system are acquired by a trained artificial neural network. It is demonstrated that spatial diversity has the potential to improve the system performance and that repetition MIMO coding outperforms Alamouti-type coding.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا