ﻻ يوجد ملخص باللغة العربية
Besides mimicking bio-chemical and multi-scale communication mechanisms, molecular communication forms a theoretical framework for virus infection processes. Towards this goal, aerosol and droplet transmission has recently been modeled as a multiuser scenario. In this letter, the infection performance is evaluated by means of a mutual information analysis, and by an even simpler probabilistic performance measure which is closely related to absorbed viruses. The so-called infection rate depends on the distribution of the channel input events as well as on the transition probabilities between channel input and output events. The infection rate is investigated analytically for five basic discrete memoryless channel models. Numerical results for the transition probabilities are obtained by Monte Carlo simulations for pathogen-laden particle transmission in four typical indoor environments: two-person office, corridor, classroom, and bus. Particle transfer contributed significantly to infectious diseases like SARS-CoV-2 and influenza.
This article introduces a model-agnostic approach to study statistical synergy, a form of emergence in which patterns at large scales are not traceable from lower scales. Our framework leverages various multivariate extensions of Shannons mutual info
The mutual information between two jointly distributed random variables $X$ and $Y$ is a functional of the joint distribution $P_{XY},$ which is sometimes difficult to handle or estimate. A coarser description of the statistical behavior of $(X,Y)$ i
To provide an efficient approach to characterize the input-output mutual information (MI) under additive white Gaussian noise (AWGN) channel, this short report fits the curves of exact MI under multilevel quadrature amplitude modulation (M-QAM) signa
Estimators for mutual information are typically biased. However, in the case of the Kozachenko-Leonenko estimator for metric spaces, a type of nearest neighbour estimator, it is possible to calculate the bias explicitly.
We propose a new information-theoretic bound on generalization error based on a combination of the error decomposition technique of Bu et al. and the conditional mutual information (CMI) construction of Steinke and Zakynthinou. In a previous work, Ha