ترغب بنشر مسار تعليمي؟ اضغط هنا

The recent synthesis and characterization of bilayers of vitreous silica has produced valuable new information on ring sizes and distributions. In this paper, we compare the ring statistics of experimental samples with computer generated samples. The average ring size is fixed at six by topology, but the width, skewness and other moments of the distribution of ring edges are characteristics of particular samples. We examine the Aboav-Weaire law that quantifies the propensity of smaller rings to be adjacent to larger rings, and find similar results for available experimental samples which however differ somewhat from computer-generated bilayers currently. We introduce a new law for the areas of rings of various sizes.
We computer model a free-standing vitreous silica bilayer which has recently been synthesized and characterized experimentally in landmark work. Here we model the bilayer using a computer assembly procedure that starts from a single layer of amorphou s graphene, generated using a bond switching algorithm from an initially crystalline graphene structure. Next each bond is decorated with an oxygen atom and the carbon atoms are relabeled as silicon. This monolayer can be now thought of as a two dimensional network of corner sharing triangles. Next each triangle is made into a tetrahedron, by raising the silicon atom above each triangle and adding an additional singly coordinated oxygen atom at the apex. The final step is to mirror reflect this layer to form a second layer and then attach the two layers together to form the bilayer. We show that this vitreous silica bilayer has the additional macroscopic degrees of freedom to easily form a network of identical corner sharing tetrahedra if there is a symmetry plane through the center of the bilayer going through the layer of oxygen ions that join the upper and lower layers. This has the consequence that the upper rings lie exactly above the lower rings, which are tilted in general. The assumption of a network of perfect corner sharing tetrahedra leads to a range of possible densities that we have previously characterized in three dimensional zeolites as a flexibility window. Finally, using a realistic potential, we have relaxed the bilayer to determine the density, and other structural characteristics such as the Si-Si pair distribution functions and the Si-O-Si bond angle distribution, which are compared to the experimental results obtained by direct imaging.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا