ترغب بنشر مسار تعليمي؟ اضغط هنا

59 - Mark Dijkstra 2011
Observations of local star forming galaxies have revealed a correlation between the rate at which galaxies form stars and their X-Ray luminosity. We combine this correlation with the most recent observational constraints on the integrated star format ion rate density, and find that star forming galaxies account for 5-20% of the total soft and hard X-ray backgrounds, where the precise number depends on the energy band and the assumed average X-ray spectral energy distribution of the galaxies below ~20 keV. If we combine the L_X-SFR relation with recently derived star formation rate function, then we find that star forming galaxies whose X-ray flux falls well (more than a factor of 10) below the detection thresholds of the Chandra Deep Fields, can fully account for the unresolved soft X-ray background, which corresponds to ~6% of its total. Motivated by this result, we put limits on the allowed redshift evolution of the parameter c_X equiv L_X/SFR, and/or its evolution towards lower and higher star formation rates. If we parametrize the redshift evolution of c_X ~ (1+z)^b, then we find that b leq 1.3 (95% CL). On the other hand, the observed X-ray luminosity functions (XLFs) of star forming galaxies indicate that c_X may be increasing towards higher redshifts and/or higher star formation rates at levels that are consistent with the X-ray background, but possibly at odds with the locally observed L_X-SFR relation.
A soft ultraviolet radiation field, 10.2 eV < E <13.6 eV, that permeates neutral intergalactic gas during the Epoch of Reionization (EoR) excites the 2p (directly) and 2s (indirectly) states of atomic hydrogen. Because the 2s state is metastable, the lifetime of atoms in this level is relatively long, which may cause the 2s state to be overpopulated relative to the 2p state. It has recently been proposed that for this reason, neutral intergalactic atomic hydrogen gas may be detected in absorption in its 3-cm fine-structure line (2s_1/2 -> 2p_3/2) against the Cosmic Microwave Background out to very high redshifts. In particular, the optical depth in the fine-structure line through neutral intergalactic gas surrounding bright quasars during the EoR may reach tau~1e-5. The resulting surface brightness temperature of tens of micro K (in absorption) may be detectable with existing radio telescopes. Motivated by this exciting proposal, we perform a detailed analysis of the transfer of Lyman beta,gamma,delta,... radiation, and re-analyze the detectability of the fine-structure line in neutral intergalactic gas surrounding high-redshift quasars. We find that proper radiative transfer modeling causes the fine-structure absorption signature to be reduced tremendously to tau< 1e-10. We therefore conclude that neutral intergalactic gas during the EoR cannot reveal its presence in the 3-cm fine-structure line to existing radio telescopes.
The earliest generation of stars and black holes must have established an early Lyman-Werner background (LWB) at high redshift, prior to the epoch of reionization. Because of the long mean free path of photons with energies E<13.6 eV, the LWB was nea rly uniform. However, some variation in the LWB is expected due to the discrete nature of the sources, and their highly clustered spatial distribution. In this paper, we compute the probability distribution function (PDF) of the LW flux that irradiates dark matter (DM) halos collapsing at high-redshift (z~10). Our model accounts for (i) the clustering of DM halos, (ii) Poisson fluctuations in the number of corresponding star forming galaxies, and (iii) scatter in the LW luminosity produced by halos of a given mass (calibrated using local observations). We find that > 99% of the DM halos are illuminated by a LW flux within a factor of 2 of the global mean value. However, a small fraction, ~1e-8 to 1e-6, of DM halos with virial temperatures above 1e4 K have a close luminous neighbor within < 10 kpc, and are exposed to a LW flux exceeding the global mean by a factor of > 20, or to J_(21,LW)> 1e3 (in units of 1e-21 erg/s/Hz/sr/cm^2). This large LW flux can photo--dissociate H_2 molecules in the gas collapsing due to atomic cooling in these halos, and prevent its further cooling and fragmentation. Such close halo pairs therefore provide possible sites in which primordial gas clouds collapse directly into massive black holes (M_BH~ 1e4 - 1e6 M_sun), and subsequently grow into supermassive (M_BH > 1e9 M_sun) black holes by z~6.
The ionizing ultraviolet background (UVB) during reionization can suppress the gas content of low-mass galaxies, even those capable of efficient atomic cooling, and thus lead to an extended reionization epoch. In this work, we explore the importance of negative UV radiative feedback on Tvir > 10^4 K halos during the middle and late stages of reionization. We do not try to self-consistently model reionization; instead, we explore a large parameter space in an attempt to draw general, robust conclusions. We do this using a tiered approach. Using 1-D hydrodynamical simulations, we model the collapse of gas onto halos of various masses under UVBs of various intensities. We then generate realistic, parametrized maps of the inhomogeneous UVB, using large-scale semi-numeric simulations. By combining these results, we find that under all reasonably conservative scenarios, UV feedback on atomically-cooled halos is not strong enough to notably delay the bulk of reionization. Such a delay is only likely if ionizing efficiencies of z > 10 sources are much higher (~ two orders of magnitude) than z ~ 6 data seem to imply. We also find that feedback is very strongly dependent on halo mass. Our results suggest that the natural time-scale for the bulk of reionization is the growth of the global collapsed fraction contained in Tvir > 10^4 K halos. Finally, our results underscore the importance of taking into account extended dynamical ranges when modeling reionization.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا