ترغب بنشر مسار تعليمي؟ اضغط هنا

There has been significant controversy over the mechanisms responsible for forming compact stellar systems like ultra compact dwarfs (UCDs), with suggestions that UCDs are simply the high mass extension of the globular cluster (GC) population, or alt ernatively, the liberated nuclei of galaxies tidally stripped by larger companions. Definitive examples of UCDs formed by either route have been difficult to find, with only a handful of persuasive examples of stripped-nucleus type UCDs being known. In this paper we present very deep Gemini/GMOS spectroscopic observations of the suspected stripped nucleus UCD NGC 4546-UCD1 taken in good seeing conditions (< 0.7). With these data we examine the spatially resolved kinematics and star formation history of this unusual object. We find no evidence of a rise in the central velocity dispersion of the UCD, suggesting that this UCD lacks a massive central black hole like those found in some other compact stellar systems, a conclusion confirmed by detailed dynamical modelling. Finally we are able to use our extremely high signal to noise spectrum to detect a temporally extended star formation history for this UCD. We find that the UCD was forming stars since the earliest epochs until at least 1-2 Gyr ago. Taken together these observations confirm that NGC 4546-UCD1 is the remnant nucleus of a nucleated dwarf galaxy that was tidally destroyed by NGC 4546 within the last 1-2 Gyr.
Here we present new Keck ESI high-resolution spectroscopy and deep archival HST/ACS imaging for S999, an ultra-compact dwarf in the vicinity of M87, which was claimed to have an extremely high dynamical-to-stellar mass ratio. Our data increase the to tal integration times by a factor of 5 and 60 for spectroscopy and imaging, respectively. This allows us to constrain the stellar population parameters for the first time (simple stellar population equivalent age $=7.6^{+2.0}_{-1.6}$ Gyr; $[Z/textrm{H}]=-0.95^{+0.12}_{-0.10}$; $[alpha/textrm{Fe}]=0.34^{+0.10}_{-0.12}$). Assuming a Kroupa stellar initial mass function, the stellar population parameters and luminosity ($M_{F814W}=-12.13pm0.06$ mag) yield a stellar mass of $M_*=3.9^{+0.9}_{-0.6}times10^6 M_{odot}$, which we also find to be consistent with near-infrared data. Via mass modelling, with our new measurements of velocity dispersion ($sigma_{ap}=27pm2$ km s$^{-1}$) and size ($R_e=20.9pm1.0$ pc), we obtain an elevated dynamical-to-stellar mass ratio $M_{dyn}/M_*=8.2$ (with a range $5.6le M_{dyn}/M_* le 11.2$). Furthermore, we analyse the surface brightness profile of S999, finding only a small excess of light in the outer parts with respect to the fitted Sersic profile, and a positive colour gradient. Taken together these observations suggest that S999 is the remnant of a much larger galaxy that has been tidally stripped. If so, the observed elevated mass ratio may be caused by mechanisms related to the stripping process: the existence of an massive central black hole or internal kinematics that are out of equilibrium due to the stripping event. Given the observed dynamical-to-stellar mass ratio we suggest that S999 is an ideal candidate to search for the presence of an overly massive central black hole.
The previously clear division between small galaxies and massive star clusters is now occupied by objects called ultra compact dwarfs (UCDs) and compact ellipticals (cEs). Here we combine a sample of UCDs and cEs with velocity dispersions from the AI MSS project with literature data to explore their dynamical-to-stellar mass ratios. We confirm that the mass ratios of many UCDs in the stellar mass range 10$^6$ -- 10$^9$ M$_{odot}$ are systematically higher than those for globular clusters which have mass ratios near unity. However, at the very highest masses in our sample, i.e. 10$^9$ -- 10$^{10}$ M$_{odot}$, we find that cE galaxies also have mass ratios of close to unity, indicating their central regions are mostly composed of stars. Suggested explanations for the elevated mass ratios of UCDs have included a variable IMF, a central black hole, and the presence of dark matter. Here we present another possible explanation, i.e. tidal stripping. Under various assumptions, we find that the apparent variation in the mass ratio with stellar mass and stellar density can be qualitatively reproduced by published tidal stripping simulations of a dwarf elliptical galaxy. In the early stages of the stripping process the galaxy is unlikely to be in virial equilibrium. At late stages, the final remnant resembles the properties of $sim$10$^7$ M$_{odot}$ UCDs. Finally, we discuss the need for more detailed realistic modelling of tidal stripping over a wider range of parameter space, and observations to further test the stripping hypothesis.
Using data from the WISE mission, we have measured near infra-red (NIR) photometry of a diverse sample of dust-free stellar systems (globular clusters, dwarf and giant early-type galaxies) which have metallicities that span the range -2.2 < [Fe/H] (d ex) < 0.3. This dramatically increases the sample size and broadens the metallicity regime over which the 3.4 (W1) and 4.6 micron (W2) photometry of stellar populations have been examined. We find that the W1 - W2 colors of intermediate and old (> 2 Gyr) stellar populations are insensitive to the age of the stellar population, but that the W1 - W2 colors become bluer with increasing metallicity, a trend not well reproduced by most stellar population synthesis (SPS) models. In common with previous studies, we attribute this behavior to the increasing strength of the CO absorption feature located in the 4.6 micron bandpass with metallicity. Having used our sample to validate the efficacy of some of the SPS models, we use these models to derive stellar mass-to-light ratios in the W1 and W2 bands. Utilizing observational data from the SAURON and ATLAS3D surveys, we demonstrate that these bands provide extremely simple, yet robust stellar mass tracers for dust free older stellar populations that are freed from many of the uncertainties common among optical estimators.
We describe the structural and kinematic properties of the first compact stellar systems discovered by the AIMSS project. These spectroscopically confirmed objects have sizes ($sim$6 $<$ R$_{rm e}$ [pc] $<$ 500) and masses ($sim$2$times$10$^{6}$ $<$ M$_*$/M$_odot$ $<$ 6$times$10$^{9}$) spanning the range of massive globular clusters (GCs), ultra compact dwarfs (UCDs) and compact elliptical galaxies (cEs), completely filling the gap between star clusters and galaxies. Several objects are close analogues to the prototypical cE, M32. These objects, which are more massive than previously discovered UCDs of the same size, further call into question the existence of a tight mass-size trend for compact stellar systems, while simultaneously strengthening the case for a universal zone of avoidance for dynamically hot stellar systems in the mass-size plane. Overall, we argue that there are two classes of compact stellar systems: 1) massive star clusters and 2) a population closely related to galaxies. Our data provide indications for a further division of the galaxy-type UCD/cE population into two groups, one population that we associate with objects formed by the stripping of nucleated dwarf galaxies, and a second population that formed through the stripping of bulged galaxies or are lower-mass analogues of classical ellipticals. We find compact stellar systems around galaxies in low to high density environments, demonstrating that the physical processes responsible for forming them do not only operate in the densest clusters.
This paper presents further results from our spectroscopic study of the globular cluster (GC) system of the group elliptical NGC 3923. From observations made with the GMOS instrument on the Gemini South telescope, an additional 50 GC and Ultra Compac t Dwarf (UCD) candidates have been spectroscopically confirmed as members of the NGC 3923 system. When the recessional velocities of these GCs are combined with the 29 GC velocities reported previously, a total sample of 79 GC/UCD velocities is produced. This sample extends to over 6 arcmin (>6 Re sim30 kpc) from the centre of NGC 3923, and is used to study the dynamics of the GC system and the dark matter content of NGC 3923. It is found that the GC system of NGC 3923 displays no appreciable rotation, and that the projected velocity dispersion is constant with radius within the uncertainties. The velocity dispersion profiles of the integrated light and GC system of NGC 3923 are indistinguishable over the region in which they overlap. We find some evidence that the diffuse light and GCs of NGC 3923 have radially biased orbits within sim130. The application of axisymmetric orbit-based models to the GC and integrated light velocity dispersion profiles demonstrates that a significant increase in the mass-to-light ratio (from M/Lv = 8 to 26) at large galactocentric radii is required to explain these observations. We therefore confirm the presence of a dark matter halo in NGC 3923. We find that dark matter comprises 17.5% of the mass within 1 Re, 41.2% within 2 Re, and 75.6% within the radius of our last kinematic tracer at 6.9 Re. The total dynamical mass within this radius is found to be 1.5 x 10^12 solar masses. In common with other studies of large ellipticals, we find that our derived dynamical mass profile is consistently higher than that derived by X-ray observations, by a factor of around 2.
This paper presents deep high quality photometry of globular cluster (GC) systems belonging to five early-type galaxies covering a range of mass and environment. Photometric data were obtained with the Gemini North and Gemini South telescopes in the filter passbands g, r, and i. The combination of these filters with good seeing conditions allows an excellent separation between GC candidates and unresolved field objects. Bimodal GC colour distributions are found in all five galaxies. Most of the GC systems appear bimodal even in the (g -r) vs (r -i) plane. A population of resolved/marginally resolved GC and Ultra Compact Dwarf candidates was found in all the galaxies. A search for the so-called blue tilt in the colour-magnitude diagrams reveals that NGC 4649 clearly shows that phenomenon although no conclusive evidence was found for the other galaxies in the sample. This blue tilt translates into a mass-metallicity relation given by Z propto M^0.28pm0.03 . This dependence was found using a new empirical (g -i) vs [Z/H] relation which relies on an homogeneous sample of GC colours and metallicities. This paper also explores the radial trends in both colour and surface density for the blue (metal-poor) and red (metal-rich) GC subpopulations. As usual, the red GCs show a steeper radial distribution than the blue ones. Evidence of galactocentric colour gradients is found in some of the GC systems, being more significant for the two S0 galaxies in the sample. Red GC subpopulations show similar colours and gradients to the galaxy halo stars in their inner region. A GC mean colour-galaxy luminosity relation, consistent with [Z/H] propto L_B ^0.26pm0.08, is present for the red GCs. An estimate of the total GC populations and specific frequency SN values is presented for NGC 3115, NGC 3379, NGC 3923 and NGC 4649.
We present a technique to extract ultra-deep diffuse-light spectra from the standard multi-object spectroscopic observations used to investigate extragalactic globular cluster (GC) systems. This technique allows a clean extraction of the spectrum of the host galaxy diffuse light from the same slitlets as the GC targets. We show the utility of the method for investigating the kinematics and stellar populations of galaxies at radii much greater than usually probed in longslit studies, at no additional expense in terms of telescope time. To demonstrate this technique we present Gemini/GMOS spectroscopy of 29 GCs associated with the elliptical galaxy NGC 3923. We compare the measured stellar population parameters of the GC system with those of the spheroid of NGC 3923 at the same projected radii, and find the GCs to have old ages (> 10 Gyr), [alpha/Fe]~0.3 and a range of metallicities running from [Z/H] = -1.8 to +0.35. The diffuse light of the galaxy is found to have ages, metallicities and [alpha/Fe] abundance ratios indistinguishable from those of the red GCs.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا