ترغب بنشر مسار تعليمي؟ اضغط هنا

How elevated is the dynamical-to-stellar mass ratio of the ultra-compact dwarf S999?

48   0   0.0 ( 0 )
 نشر من قبل Joachim Janz
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Here we present new Keck ESI high-resolution spectroscopy and deep archival HST/ACS imaging for S999, an ultra-compact dwarf in the vicinity of M87, which was claimed to have an extremely high dynamical-to-stellar mass ratio. Our data increase the total integration times by a factor of 5 and 60 for spectroscopy and imaging, respectively. This allows us to constrain the stellar population parameters for the first time (simple stellar population equivalent age $=7.6^{+2.0}_{-1.6}$ Gyr; $[Z/textrm{H}]=-0.95^{+0.12}_{-0.10}$; $[alpha/textrm{Fe}]=0.34^{+0.10}_{-0.12}$). Assuming a Kroupa stellar initial mass function, the stellar population parameters and luminosity ($M_{F814W}=-12.13pm0.06$ mag) yield a stellar mass of $M_*=3.9^{+0.9}_{-0.6}times10^6 M_{odot}$, which we also find to be consistent with near-infrared data. Via mass modelling, with our new measurements of velocity dispersion ($sigma_{ap}=27pm2$ km s$^{-1}$) and size ($R_e=20.9pm1.0$ pc), we obtain an elevated dynamical-to-stellar mass ratio $M_{dyn}/M_*=8.2$ (with a range $5.6le M_{dyn}/M_* le 11.2$). Furthermore, we analyse the surface brightness profile of S999, finding only a small excess of light in the outer parts with respect to the fitted Sersic profile, and a positive colour gradient. Taken together these observations suggest that S999 is the remnant of a much larger galaxy that has been tidally stripped. If so, the observed elevated mass ratio may be caused by mechanisms related to the stripping process: the existence of an massive central black hole or internal kinematics that are out of equilibrium due to the stripping event. Given the observed dynamical-to-stellar mass ratio we suggest that S999 is an ideal candidate to search for the presence of an overly massive central black hole.

قيم البحث

اقرأ أيضاً

We analyse structural decompositions of 500 late-type galaxies (Hubble $T$-type $ge 6$) from the Spitzer Survey of Stellar Structure in Galaxies (S$^4$G), spanning a stellar mass range of about $10^7$ to a few times $10^{10}$ M$_odot$. Their decompos ition parameters are compared with those of the early-type dwarfs in the Virgo cluster from Janz et al. They have morphological similarities, including the fact that the fraction of simple one-component galaxies in both samples increases towards lower galaxy masses. We find that in the late-type two-component galaxies both the inner and outer structures are by a factor of two larger than those in the early-type dwarfs, for the same stellar mass of the component. While dividing the late-type galaxies to low and high density environmental bins, it is noticeable that both the inner and outer components of late types in the high local galaxy density bin are smaller, and lie closer in size to those of the early-type dwarfs. This suggests that, although structural differences between the late and early-type dwarfs are observed, environmental processes can plausibly transform their sizes sufficiently, thus linking them evolutionarily.
The stellar-to-halo mass relation (SHMR) is not only one of the main sources of information we have on the connection between galaxies and their dark matter haloes, but also an important indicator of the performance of galaxy formation models. Here w e use one of the largest sample of galaxies with both high-quality rotation curves and near-infrared surface photometry, and perform a detailed comparative analysis of the SHMR. Our analysis shows that there are significant statistical differences between popular forms of the SHMR, and illustrates the predictive power of a new physically motivated scaling relation, which connects the stellar mass fraction ($M_{star}/M_{mathrm{h}}$) to the stellar specific angular momentum ($j_{star}$) and the stellar radial velocity dispersion ($sigma_{star}$) via disc gravitational instability. Making use of such a relation, we demonstrate (i) how challenging it is to reproduce the efficiency of galaxy formation even for state-of-the-art cosmological hydrodynamical simulations, and (ii) that the evolution of the stellar mass fraction is regulated by disc gravitational instability: when $M_{star}/M_{mathrm{h}}$ varies, $j_{star}$ and $sigma_{star}$ also vary as predicted by our scaling relation, thus erasing the memory of such evolution. This implies that the process of disc gravitational instability is intriguingly uniform across disc galaxies of all morphological types: from lenticulars to blue compact dwarfs. In particular, the cosmic variance of Toomres $Q$ is 0.2 dex, a universal value for both stars and atomic gas.
231 - Michael Hilker 2015
Most ultra-compact dwarf galaxies (UCDs) and very massive globular clusters reside in nearby galaxy clusters or around nearby giant galaxies. Due to their distance (>Mpc) and compactness (r_eff<100pc) they are barely resolved, and thus it is difficul t to obtain their internal properties. Here I present our most recent attempts to constrain the mass function, stellar content and dynamical state of UCDs in the Fornax cluster. Thanks to radial velocity membership assignment of ~950 globular clusters (GCs) and UCDs in the core of Fornax, the shape of their mass function is well constrained. It is consistent with the standard Gaussian mass function of GCs. Our recent simulations on the disruption process of nucleated dwarf galaxies in cluster environments showed that ~40% of the most massive UCDs should originate from nuclear star clusters. Some Fornax UCDs actually show evidence for this scenario, as revealed by extended low surface brightness disks around them and onsets of tidal tails. Multi-band UV to optical imaging as well as low to medium resolution spectroscopy revealed that there exist UCDs with youngish ages, (sub-)solar [alpha/Fe] abundances, and probably He-enriched populations.
56 - Shigeki Inoue 2017
Recent observations have been discovering new ultra-faint dwarf galaxies as small as $sim20~{rm pc}$ in half-light radius and $sim3~{rm km~s^{-1}}$ in line-of-sight velocity dispersion. In these galaxies, dynamical friction on a star against dark mat ter can be significant and alter their stellar density distribution. The effect can strongly depend on a central density profile of dark matter, i.e. cusp or core. In this study, I perform computations using a classical and a modern analytic formulae and $N$-body simulations to study how dynamical friction changes a stellar density profile and how different it is between cuspy and cored dark matter haloes. This study shows that, if a dark matter halo has a cusp, dynamical friction can cause shrivelling instability which results in emergence of a stellar cusp in the central region $simeq2~{rm pc}$. On the other hand, if it has a constant-density core, dynamical friction is significantly weaker and does not generate a stellar cusp even if the galaxy has the same line-of-sight velocity dispersion. In such a compact and low-mass galaxy, since the shrivelling instability by dynamical friction is inevitable if it has a dark matter cusp, absence of a stellar cusp implies that the galaxy has a dark-matter core. I expect that this could be used to diagnose a dark matter density profile in these compact ultra-faint dwarf galaxies.
399 - A. Just 2015
A new sample of stars, representative of the solar neighbourhood luminosity function, is constructed from the Hipparcos catalogue and the Fifth Catalogue of Nearby Stars. We have cross-matched to sources in the 2MASS catalogue so that for all stars i ndividually determined Near Infrared photometry (NIR) is available on a homogeneous system (typically K_s). The spatial completeness of the sample has been carefully determined by statistical methods, and the NIR luminosity function of the stars has been derived by direct star counts. We find a local volume luminosity of 0.121 +/- 0.004 L_K_sun/(pc**3), corresponding to a volumetric mass-to-light ratio of M/L_K = 0.31 +/- 0.02 M_sun/L_K_sun, where giants contribute 80 per cent to the light but less than 2 per cent to the stellar mass. We derive the surface brightness of the solar cylinder with the help of a vertical disc model. We find a surface brightness of 99 L_K_sun/(pc**2) with an uncertainty of approximately 10 %. This corresponds to a mass-to-light ratio for the solar cylinder of M/L_K = 0.34 M_sun/L_K_sun. The mass-to-light ratio for the solar cylinder is only 10% larger than the local value despite the fact that the local population has a much larger contribution of young stars. It turns out that the effective scale heights of the lower main sequence carrying most of the mass is similar to that of the giants, which are dominating the NIR light. The corresponding colour for the solar cylinder is V-K=2.89 mag compared to the local value of V-K = 2.46 mag. An extrapolation of the local surface brightness to the whole Milky Way yields a total luminosity of M_K = -24.2 mag. The Milky Way falls in the range of K band Tully-Fisher (TF) relations from the literature.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا