ترغب بنشر مسار تعليمي؟ اضغط هنا

Recently, a new cosmological framework, dubbed Ricci Cosmology, has been proposed. Such a framework has emerged from the study of relativistic dynamics of fluids out of equilibrium in a curved background and is characterised by the presence of deviat ions from the equilibrium pressure in the energy-momentum tensor which are due to linear terms in the Ricci scalar and the Ricci tensor. The coefficients in front of such terms are called the second order transport coefficients and they parametrise the fluid response to the pressure terms arising from the spacetime curvature. Under the preliminary assumption that the second order transport coefficients are constant, we find the simplest solution of Ricci cosmology in which the presence of pressure terms causes a departure from the perfect fluid redshift scaling for matter components filling the Universe. In order to test the viability of this solution, we make four different ans{a}tze on the transport coefficients, giving rise to four different cases of our model. On the physical ground of the second law of thermodynamics for fluids with non-equilibrium pressure, we find some theoretical bounds (priors) on the parameters of the models. Our main concern is then the check of each of the case against the standard set of cosmological data in order to obtain the observational bounds on the second order transport coefficients. We find those bounds also realising that Ricci cosmology model is compatible with $Lambda$CDM cosmology for all the ans{a}tze.
Using the 3rd quantization formalism we study the quantum entanglement of universes created in pairs within the framework of standard homogeneous and isotropic cosmology. In particular, we investigate entanglement quantities (entropy, temperature) ar ound maxima, minima and inflection points of the classical evolution. The novelty from previous works is that we show how the entanglement changes in an extended minisuperspace parameterised by the scale factor and additionally, by the massless scalar field. We study the entanglement quantities for the universes which classically exhibit Big-Bang and other than Big-Bang (exotic) singularities such as Big-Brake, Big-Freeze, Big-Separation, and Little-Rip. While taking into account the scalar field, we find that the entanglement entropy is finite at the Big-Bang singularity and diverges at maxima or minima of expansion. As for the exotic singularity models we find that the entanglement entropy or the temperature in all the critical points and singularities is either finite or infinite, but it never vanishes. This shows that each of the universes of a pair is entangled to a degree parametrized by the entanglement quantities which measure the quantumness of the system. Apart from the von Neumann entanglement entropy, we also check the behaviour of the the Tsallis and the Renyi entanglement entropies, and find that they behave similarly as the meters of the quantumness. Finally, we find that the best-fit relation between the entanglement entropy and the Hubble parameter (which classically marks special points of the universe evolution) is of the logarithmic shape, and not polynomial, as one could initially expect.
A novel fractal structure for the cosmological horizon, inspired by COVID-19 geometry, which results in a modified area entropy, is applied to cosmology in order to serve dark energy. The constraints based on a complete set of observational data are derived. There is a strong Bayesian evidence in favor of such a dark energy in comparison to a standard $Lambda$CDM model and that this energy cannot be reduced to a cosmological constant. Besides, there is a shift towards smaller values of baryon density parameter and towards larger values of the Hubble parameter, which reduces the Hubble tension.
We present a formalism which allows for the perturbative derivation of the Extended Uncertainty Principle (EUP) for arbitrary spatial curvature models and observers. Entering the realm of small position uncertainties, we derive a general asymptotic E UP. The leading 2nd order curvature induced correction is proportional to the Ricci scalar, while the 4th order correction features the 0th order Cartan invariant Psi^2 (a scalar quadratic in curvature tensors) and the curved space Laplacian of the Ricci scalar all of which are evaluated at the expectation value of the position operator, i.e. the expected position when performing a measurement. This result is first verified for previously derived homogeneous space models and then applied to other non-trivial curvature related effects such as inhomogeneities, rotation and an anisotropic stress fluid leading to black hole hair. Our main achievement combines the method we introduce with the Generalized Uncertainty Principle (GUP) by virtue of deformed commutators to formulate a generic form of what we call the Asymptotic Generalized Extended Uncertainty Principle (AGEUP).
This paper evaluates some important aspects of the multiverse concept. Firstly, the most realistic opportunity for it which is the spacetime variability of the physical constants and may deliver worlds with different physics, hopefully fulfilling the conditions of the anthropic principles. Then, more esoter
We find exact formulas for the Extended Uncertainty Principle (EUP) for the Rindler and Friedmann horizons and show that they can be expanded to obtain asymptotic forms known from the previous literature. We calculate the corrections to Hawking tempe rature and Bekenstein entropy of a black hole in the universe due to Rindler and Friedmann horizons. The effect of the EUP is similar to the canonical corrections of thermal fluctuations and so it rises the entropy signalling further loss of information.
We study the conformal structure of exotic (non-big-bang) singularity universes using the hybrid big-bang/exotic singularity/big-bang and big-rip/exotic singularity/big-rip models by investigating their appropriate Penrose diagrams. We show that the diagrams have the standard structure for the big-bang and big-rip and that exotic singularities appear just as the constant time hypersurfaces for the time of a singularity and because of their geodesic completeness are potentially transversable. We also comment on some applications and extensions of the Penrose diagram method in studying exotic singularities.
We study scenarios of parallel cyclic multiverses which allow for a different evolution of the physical constants, while having the same geometry. These universes are classically disconnected, but quantum-mechanically entangled. Applying the thermody namics of entanglement, we calculate the temperature and the entropy of entanglement. It emerges that the entropy of entanglement is large at big bang and big crunch singularities of the parallel universes as well as at the maxima of the expansion of these universes. The latter seems to confirm earlier studies that quantum effects are strong at turning points of the evolution of the universe performed in the context of the timeless nature of the Wheeler-DeWitt equation and decoherence. On the other hand, the entropy of entanglement at big rip singularities is going to zero despite its presumably quantum nature. This may be an effect of total dissociation of the universe structures into infinitely separated patches violating the null energy condition. However, the temperature of entanglement is large/infinite at every classically singular point and at maximum expansion and seems to be a better measure of quantumness.
Variation of the speed of light is quite a debated issue in cosmology with some benefits, but also with some controversial concerns. Many approaches to develop a consistent varying speed of light (VSL) theory have been developed recently. Although a lot of theoretical debate has sprout out about their feasibility and reliability, the most obvious and straightforward way to discriminate and check if such theories are really workable has been missed out or not fully employed. What is meant here is the comparison of these theories with observational data in a fully comprehensive way. In this paper we try to address this point i.e., by using the most updated cosmological probes, we test three different candidates for a VSL theory (Barrow & Magueijo, Avelino & Martins, and Moffat) signal. We consider many different ans{a}tze for both the functional form of $c(z)$ (which cannot be fixed by theoretical motivations) and for the dark energy dynamics, in order to have a clear global picture from which we extract the results. We compare these results using a reliable statistical tool such as the Bayesian Evidence. We find that the present cosmological data is perfectly compatible with any of these VSL scenarios, but in one case (Moffat model) we have a higher Bayesian Evidence ratio in favour of VSL than in the standard $c=$ constant $Lambda$CDM scenario. Moreover, in such a scenario, the VSL signal can help to strengthen constraints on the spatial curvature (with indication toward an open universe), to clarify some properties of dark energy (exclusion of a cosmological constant at $2sigma$ level) and is also falsifiable in the nearest future due to some peculiar issues which differentiate this model from the standard model. Finally, we have applied some priors which come from cosmology and, in particular, from information theory and gravitational thermodynamics.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا