ترغب بنشر مسار تعليمي؟ اضغط هنا

Counterrotating stars in disk galaxies are a puzzling dynamical feature whose origin has been ascribed to either satellite accretion events or to disk instabilities triggered by deviations from axisymmetry. We use a cosmological simulation of the for mation of a disk galaxy to show that counterrotating stellar disk components may arise naturally in hierarchically-clustering scenarios even in the absence of merging. The simulated disk galaxy consists of two coplanar, overlapping stellar components with opposite spins: an inner counterrotating bar-like structure made up mostly of old stars surrounded by an extended, rotationally-supported disk of younger stars. The opposite-spin components originate from material accreted from two distinct filamentary structures which at turn around, when their net spin is acquired, intersect delineating a V-like structure. Each filament torques the other in opposite directions; the filament that first drains into the galaxy forms the inner counterrotating bar, while material accreted from the other filament forms the outer disk. Mergers do not play a substantial role and most stars in the galaxy are formed in situ; only 9% of all stars are contributed by accretion events. The formation scenario we describe here implies a significant age difference between the co- and counterrotating components, which may be used to discriminate between competing scenarios for the origin of counterrotating stars in disk galaxies.
Cosmological simulations indicate that cold dark matter (CDM) halos should be triaxial. Verifying observationally this theoretical prediction is, however, less than straightforward because the assembly of galaxies is expected to modify the halo shape s and to render them more axisymmetric. We use a suite of N-body simulations to investigate quantitatively the effect of the growth of a central disk galaxy on the shape of triaxial dark matter halos. As expected, the halo responds to the presence of the disk by becoming more spherical. The net effect depends only weakly on the orientation of the disk relative to the halo principal axes or the timescale of disk assembly, but strongly on the overall gravitational importance of the disk. Our results show that exponential disks whose contribution peaks at less than ~50% of their circular velocity are unable to modify noticeably the shape of the gravitational potential of their surrounding halos. Many dwarf and low surface brightness galaxies are expected to be in this regime, and therefore their detailed kinematics could be used to probe halo triaxiality, one of the basic predictions of the CDM paradigm. We argue that the complex disk kinematics of the dwarf galaxy NGC 2976 might be the reflection of a triaxial halo. Such signatures of halo triaxiality should be common in galaxies where the luminous component is subdominant.
We study the orbital properties of stars in four (published) simulations of thick disks formed by: i) accretion from disrupted satellites, ii) heating of a pre-existing thin disk by a minor merger, iii) radial migration and iv) gas rich mergers. We f ind that the distribution of orbital eccentricities are predicted to be different for each model: a prominent peak at low eccentricity is expected for the heating, migration and gas-rich merging scenarios, while the eccentricity distribution is broader and shifted towards higher values for the accretion model. These differences can be traced back to whether the bulk of the stars in each case is formed in-situ or is accreted, and are robust to the peculiarities of each model. A simple test based on the eccentricity distribution of nearby thick disk stars may thus help elucidate the dominant formation mechanism of the Galactic thick disk.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا