ترغب بنشر مسار تعليمي؟ اضغط هنا

We study the interior of a Schwarzschild Black-Hole (B-H) using Relativistic Quantum Geometry described in cite{rb} and cite{rb1}. We found discrete energy levels for a scalar field from a polynomial condition for Heun Confluent functions expanded ar ound the Schwarzschild radius. From the solutions it is obtained that the uncertainty principle is valid for each energy level of space-time, in the form: $E_n, r_{sh,n}=hbar/2$. Temperature, entropy and the B-H mass are dependent on the number of states in the B-H, such that the Bekenstein-Hawking (BH) results are obtained in a limit case.
We explore a cosmological model in which the time scale is variable with the expansion of the universe and the effective spacetime is driven by the inflaton field. An example is considered and their predictions are contrasted between Planck 2018 data . We calculate the spectrum indices and the slow-rolling parameters of the effective potential. The results are in very good agreement with observations.
We study the behavior of large-scale (cosmological) modes of back-reaction effects during inflation. We find that the group of modes which describes the very large-scale fluctuations of energy density during inflation due to back-reaction effects evo lve in phase between them, but there is a tear of these modes with respect to the other modes that describe astrophysical scales. This effect could be the origin for the large-scale homogeneity and isotropy of the universe and could be a manifestation of the existence of dark energy, which is responsible for the accelerated expansion of the universe.
Using Relativistic Quantum Geometry (RQG), we study the emergence of back-reaction modes with solitonic properties, on astrophysical and cosmological scales, in a model of pre-inflation where the universe emerge from a topological phase transition. W e found that, modes of the geometrical field that describes back-reaction effects related to larger scales (cosmological scales), are more coherent than those related to astrophysical scales, so that they can be considered a coarse-grained soliton.
We calculate the mass density of the Earth using a Gravito-Electro-Magnetic theory on an extended 5D Schwarzschild-de Sitter metric, in which we define the vacuum. Our results are in very good agreement with that of the Dziewonski-Anderson model.
Using a new kind of 5D Ricci-flat canonical metric, we obtain by a static foliation an effective 4D Schwarzschild-de Sitter hypersurface. We examine some particular initial conditions which could be responsible for the inflationary expansion of the e arly universe, which could be driven by the explosion of a White Hole (WH). The zeroth order spectrum outside the WH describes quantum fluctuations, which for a scale invariant power spectrum, can be expressed in terms of the cosmological constant, or the square mass of the WH.
We revisit an extension of the well-known formalism for gauge-invariant scalar metric fluctuations, to study the spectrums for both, the inflaton and gauge invariant (scalar) metric fluctuations in the framework of a single field inflationary model w here the quasi-exponential expansion is driven by an inflation which is minimally coupled to gravity. The proposal here examined is valid also for fluctuations with large amplitude, but for cosmological scales, where vector and tensor perturbations can be neglected and the fluid is irrotacional.
Using the Ponce de Leon background metric, which describes a 5D universe in an apparent vacuum: $bar{G}_{AB}=0$, we study the effective 4D evolution of both, the inflaton and gauge-invariant scalar metric fluctuations, in the recently introduced model of space time matter inflation.
We study a model of power-law inflationary inflation using the Space-Time-Matter (STM) theory of gravity for a five dimensional (5D) canonical metric that describes an apparent vacuum. In this approach the expansion is governed by a single scalar (ne utral) quantum field. In particular, we study the case where the power of expansion of the universe is $p gg 1$. This kind of model is more successful than others in accounting for galaxy formation.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا