ترغب بنشر مسار تعليمي؟ اضغط هنا

The goal of this paper is to explicitly detect all the arithmetic genera of arithmetically Cohen-Macaulay projective curves with a given degree $d$. It is well-known that the arithmetic genus $g$ of a curve $C$ can be easily deduced from the $h$-vect or of the curve; in the case where $C$ is arithmetically Cohen-Macaulay of degree $d$, $g$ must belong to the range of integers $big{0,ldots,binom{d-1}{2}big}$. We develop an algorithmic procedure that allows one to avoid constructing most of the possible $h$-vectors of $C$. The essential tools are a combinatorial description of the finite O-sequences of multiplicity $d$, and a sort of continuity result regarding the generation of the genera. The efficiency of our method is supported by computational evidence. As a consequence, we single out the minimal possible Castelnuovo-Mumford regularity of a curve with Cohen-Macaulay postulation and given degree and genus.
Using results obtained from the study of homogeneous ideals sharing the same initial ideal with respect to some term order, we prove the singularity of the point corresponding to a segment ideal with respect to the revlex term order in the Hilbert sc heme of points in $mathbb{P}^n$. In this context, we look inside properties of several types of segment ideals that we define and compare. This study led us to focus our attention also to connections between the shape of generators of Borel ideals and the related Hilbert polynomial, providing an algorithm for computing all saturated Borel ideals with the given Hilbert polynomial.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا