ترغب بنشر مسار تعليمي؟ اضغط هنا

We provide the two-loop corrections to the Higgs boson masses of the CP-violating NMSSM in the Feynman diagrammatic approach with vanishing external momentum at ${cal O} (alpha_t alpha_s)$. The adopted renormalization scheme is a mixture between $ove rline{text{DR}}$ and on-shell conditions. Additionally, the renormalization of the top/stop sector is provided both for the $overline{text{DR}}$ and the on-shell scheme. The calculation is performed in the gaugeless limit. We find that the two-loop corrections compared to the one-loop corrections are of the order of 5-10%, depending on the top/stop renormalization scheme. The theoretical error on the Higgs boson masses is reduced due to the inclusion of these higher order corrections.
After the discovery of a Higgs-like boson by the LHC experiments ATLAS and CMS, it is of crucial importance to determine its properties in order to not only identify it as the boson responsible for electroweak symmetry breaking but also to clarify th e question if it is a Standard Model (SM) Higgs boson or the Higgs particle of some extension beyond the SM as {it e.g.} supersymmetry. In this context, the precise prediction of the Higgs parameters as masses and couplings play a crucial role for the proper distinction between different models. In extension of previous works on the loop-corrected Higgs boson masses of the Next-to-Minimal Supersymmetric Extension of the SM (NMSSM), we present here the calculation of the loop-corrected trilinear NMSSM Higgs self-couplings. The loop corrections turn out to have a substantial impact on the decay widths of Higgs-to-Higgs decays and on the production cross section of Higgs pairs via gluon fusion. They are therefore indispensable for the correct interpretation of the experimental Higgs results.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا