ترغب بنشر مسار تعليمي؟ اضغط هنا

Higher Order Corrections to the Trilinear Higgs Self-Couplings in the Real NMSSM

253   0   0.0 ( 0 )
 نشر من قبل Margarete Muhlleitner
 تاريخ النشر 2013
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

After the discovery of a Higgs-like boson by the LHC experiments ATLAS and CMS, it is of crucial importance to determine its properties in order to not only identify it as the boson responsible for electroweak symmetry breaking but also to clarify the question if it is a Standard Model (SM) Higgs boson or the Higgs particle of some extension beyond the SM as {it e.g.} supersymmetry. In this context, the precise prediction of the Higgs parameters as masses and couplings play a crucial role for the proper distinction between different models. In extension of previous works on the loop-corrected Higgs boson masses of the Next-to-Minimal Supersymmetric Extension of the SM (NMSSM), we present here the calculation of the loop-corrected trilinear NMSSM Higgs self-couplings. The loop corrections turn out to have a substantial impact on the decay widths of Higgs-to-Higgs decays and on the production cross section of Higgs pairs via gluon fusion. They are therefore indispensable for the correct interpretation of the experimental Higgs results.



قيم البحث

اقرأ أيضاً

We investigate predictions on the triple Higgs boson couplings with radiative corrections in the model with an additional real singlet scalar field. In this model, the second physical scalar state ($H$) appears in addition to the Higgs boson ($h$) wi th the mass 125 GeV. The $hhh$ vertex is calculated at the one-loop level, and its possible deviation from the predictions in the standard model is evaluated under various theoretical constraints. The decay rate of $H to hh$ is also computed at the one-loop level. We also take into account the bound from the precise measurement of the $W$ boson mass, which gives the upper limit on the mixing angle $alpha$ between two physical Higgs bosons for a given value of the mass of $H$ ($m_H^{}$). We find that the deviation in the $hhh$ coupling from the prediction in the standard model can maximally be about 250%, 150% and 75% for $m_H^{}=300$, 500 and 1000 GeV, respectively, under the requirement that the cutoff scale of the model is higher than 3 TeV. We also discuss deviations from the standard model prediction in double Higgs boson production from the gluon fusion at the LHC using the one-loop corrected Higgs boson vertices.
64 - T.N. Dao , L. Fritz , M. Krause 2019
In this paper we compute the electroweak corrections to the charged Higgs boson decay into a $W$ boson and a neutral Higgs boson in the CP-conserving NMSSM. We calculate the process in a general $R_xi$ gauge and investigate the dependence of the loop -corrected decay width on the gauge parameter $xi$. The gauge dependence arises from the mixing of different loop orders. Phenomenology requires the inclusion of mass and mixing corrections to the external Higgs bosons in order to match the experimentally measured mass values. As a result, we move away from a strict one-loop calculation and consequently mix orders in perturbation theory. Moreover, determination of the loop-corrected masses in an iterative procedure also results in the mixing of different loop orders. Gauge dependence then arises from the mismatch with tree-level Goldstone boson couplings that are applied in the loop calculation, and from the gauge dependence of the loop-corrected masses themselves. We find that the gauge dependence is significant.
193 - Per Osland 2008
We carry out a detailed analysis of the general two Higgs doublet model with CP violation. We describe two different parametrizations of this model, and then study the Higgs boson masses and the trilinear Higgs couplings for these two parametrization s. Within a rather general model, we find that the trilinear Higgs couplings have a significant dependence on the details of the model, even when the lightest Higgs boson mass is taken to be a fixed parameter. We include radiative corrections in the one-loop effective potential approximation in our analysis of the Higgs boson masses and the Higgs trilinear couplings. The one-loop corrections to the trilinear couplings of the two Higgs doublet model also depend significantly on the details of the model, and can be rather large. We study quantitatively the trilinear Higgs couplings, and show that these couplings are typically several times larger than the corresponding Standard Model trilinear Higgs coupling in some regions of the parameter space. We also briefly discuss the decoupling limit of the two Higgs doublet model.
We evaluate the full next-to-leading order supersymmetric (SUSY) electroweak and SUSY-QCD corrections to the on-shell two-body decays of the charged Higgs bosons in the framework of the CP-conserving and CP-violating Next-to-Minimal Supersymmetric ex tension of the Standard Model (NMSSM). Our corrections are implemented in the code NMSSMCALCEW in order to compute the branching ratios of the charged Higgs boson where we also take into account the state-of-the-art QCD corrections already included in the code. We investigate the impact of the NLO corrections for each decay mode in a wide range of the parameter space that is allowed by the theoretical and experimental constraints. The new version of NMSSMCALCEW is made publicly available.
We calculate renormalized Higgs boson couplings with gauge bosons and fermions at the one-loop level in the model with an additional isospin singlet real scalar field. These coupling constants can deviate from the predictions in the standard model du e to tree-level mixing effects and one-loop contributions of the extra neutral scalar boson. We investigate how they can be significant under the theoretical constraints from perturbative unitarity and vacuum stability and also the condition of avoiding the wrong vacuum. Furthermore, comparing with the predictions in the Type I two Higgs doublet model, we numerically demonstrate how the singlet extension model can be distinguished and identified by using precision measurements of the Higgs boson couplings at future collider experiments.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا