ترغب بنشر مسار تعليمي؟ اضغط هنا

We show here the existence of the indirect coupling of electron and magnetic or nuclear ion spins in self-assembled quantum dots mediated by electron-electron interactions. With a single localized spin placed in the center of the dot, only the spins of electrons occupying the zero angular momentum states couple directly to the localized spin. We show that when the electron-electron interactions are included, the electrons occupying finite angular momentum orbitals interact with the localized spin. This effective interaction is obtained using exact diagonalization of the microscopic Hamiltonian as a function of the number of electronic shells, shell spacing, and anisotropy of the electron-Mn exchange interaction. The effective interaction can be engineered to be either ferromagnetic or antiferromagnetic by tuning the parameters of the quantum dot.
We present a theory of electronic properties of HgTe quantum dot and propose a strain sensor based on a strain-driven transition from a HgTe quantum dot with inverted bandstructure and robust topologically protected quantum edge states to a normal st ate without edge states in the energy gap. The presence or absence of edge states leads to large on/off ratio of conductivity across the quantum dot, tunable by adjusting the number of conduction channels in the source-drain voltage window. The electronic properties of a HgTe quantum dot as a function of size and applied strain are described using eight-band kp Luttinger and Bir-Pikus Hamiltonians, with surface states identified with chirality of Luttinger spinors and obtained through extensive numerical diagonalization of the Hamiltonian.
Present proposals for the realisation of entangled photon pair sources using the radiative decay of the biexciton in semiconductor quantum dots are limited by the need to enforce degeneracy of the two intermediate, single exciton states. We show how this requirement is lifted if the biexciton binding energy can be tuned to zero and we demonstrate this unbinding of the biexciton in a single, pre-positioned InAs quantum dot subject to a lateral electric field. Full Configuration-Interaction calculations are presented that reveal how the biexciton is unbound through manipulation of the electron-hole Coulomb interaction and the consequent introduction of Hidden Symmetry.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا