ﻻ يوجد ملخص باللغة العربية
Present proposals for the realisation of entangled photon pair sources using the radiative decay of the biexciton in semiconductor quantum dots are limited by the need to enforce degeneracy of the two intermediate, single exciton states. We show how this requirement is lifted if the biexciton binding energy can be tuned to zero and we demonstrate this unbinding of the biexciton in a single, pre-positioned InAs quantum dot subject to a lateral electric field. Full Configuration-Interaction calculations are presented that reveal how the biexciton is unbound through manipulation of the electron-hole Coulomb interaction and the consequent introduction of Hidden Symmetry.
We propose an all-optical setup, which couples different degrees of freedom of a single photon, to investigate entanglement generation by a common environment. The two qubits are represented by the photon polarization and Hermite-Gauss transverse mod
Sharp threshold-like transitions between two stable nuclear spin polarizations are observed in optically pumped individual InGaAs self-assembled quantum dots embedded in a Schottky diode when the bias applied to the diode is tuned. The abrupt transit
The electron spin state of a singly charged semiconductor quantum dot has been shown to form a suitable single qubit for quantum computing architectures with fast gate times. A key challenge in realizing a useful quantum dot quantum computing archite
We show that a single photon pulse (SPP) incident on two interacting two-level atoms induces a transient entanglement force between them. After absorption of a multi-mode Fock state pulse, the time-dependent atomic interaction mediated by the vacuum
Strong nonlinear interactions between photons enable logic operations for both classical and quantum-information technology. Unfortunately, nonlinear interactions are usually feeble and therefore all-optical logic gates tend to be inefficient. A quan