ترغب بنشر مسار تعليمي؟ اضغط هنا

Modern HPC architectures consist of heterogeneous multi-core, many-node systems with deep memory hierarchies. Modern applications employ ever more advanced discretisation methods to study multi-physics problems. Developing such applications that expl ore cutting-edge physics on cutting-edge HPC systems has become a complex task that requires significant HPC knowledge and experience. Unfortunately, this combined knowledge is currently out of reach for all but a few groups of application developers. Chemora is a framework for solving systems of Partial Differential Equations (PDEs) that targets modern HPC architectures. Chemora is based on Cactus, which sees prominent usage in the computational relativistic astrophysics community. In Chemora, PDEs are expressed either in a high-level LaTeX-like language or in Mathematica. Discretisation stencils are defined separately from equations, and can include Finite Differences, Discontinuous Galerkin Finite Elements (DGFE), Adaptive Mesh Refinement (AMR), and multi-block systems. We use Chemora in the Einstein Toolkit to implement the Einstein Equations on CPUs and on accelerators, and study astrophysical systems such as black hole binaries, neutron stars, and core-collapse supernovae.
137 - Marek Blazewicz 2013
Starting from a high-level problem description in terms of partial differential equations using abstract tensor notation, the Chemora framework discretizes, optimizes, and generates complete high performance codes for a wide range of compute architec tures. Chemora extends the capabilities of Cactus, facilitating the usage of large-scale CPU/GPU systems in an efficient manner for complex applications, without low-level code tuning. Chemora achieves parallelism through MPI and multi-threading, combining OpenMP and CUDA. Optimizations include high-level code transformations, efficient loop traversal strategies, dynamically selected data and instruction cache usage strategies, and JIT compilation of GPU code tailored to the problem characteristics. The discretization is based on higher-order finite differences on multi-block domains. Chemoras capabilities are demonstrated by simulations of black hole collisions. This problem provides an acid test of the framework, as the Einstein equations contain hundreds of variables and thousands of terms.
Heterogeneous systems are becoming more common on High Performance Computing (HPC) systems. Even using tools like CUDA and OpenCL it is a non-trivial task to obtain optimal performance on the GPU. Approaches to simplifying this task include Merge (a library based framework for heterogeneous multi-core systems), Zippy (a framework for parallel execution of codes on multiple GPUs), BSGP (a new programming language for general purpose computation on the GPU) and CUDA-lite (an enhancement to CUDA that transforms code based on annotations). In addition, efforts are underway to improve compiler tools for automatic parallelization and optimization of affine loop nests for GPUs and for automatic translation of OpenMP parallelized codes to CUDA. In this paper we present an alternative approach: a new computational framework for the development of massively data parallel scientific codes applications suitable for use on such petascale/exascale hybrid systems built upon the highly scalable Cactus framework. As the first non-trivial demonstration of its usefulness, we successfully developed a new 3D CFD code that achieves improved performance.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا