ترغب بنشر مسار تعليمي؟ اضغط هنا

The method of optimized perturbation theory (OPT) is used to study the phase diagram of the massless Gross-Neveu model in 2+1 dimensions. In the temperature and chemical potential plane, our results give strong support to the existence of a tricritic al point and line of first order phase transition, previously only suspected to exist from extensive lattice Monte Carlo simulations. In addition of presenting these results we discuss how the OPT can be implemented in conjunction with the Landau expansion in order to determine all the relevant critical quantities.
A complete thermodynamical analysis of the 2+1 dimensional massless Gross-Neveu model is performed using the optimized perturbation theory. This is a non-perturbative method that allows us to go beyond the known large-N results already at lowest orde r. Our results, for a finite number of fermion species, N, show the existence of a tricritical point in the temperature and chemical potential phase diagram for discrete chiral phase transition allowing us to precisely to locate it. By studying the phase diagram in the pressure and inverse density plane, we also show the existence of a liquid-gas phase, which, so far, was unknown to exist in this model. Finally, we also derive N dependent analytical expressions for the fermionic mass, critical temperature and critical chemical potential.
We use the linear $delta$ expansion, or optimized perturbation theory, to evaluate the effective potential for the two dimensional Gross-Neveu model at finite temperature and density obtaining analytical equations for the critical temperature, chemic al potential and fermionic mass which include finite $N$ corrections. Our results seem to improve over the traditional large-N predictions.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا