ترغب بنشر مسار تعليمي؟ اضغط هنا

The unambiguous detection and quantification of entanglement is a hot topic of scientific research, though it is limited to low dimensions or specific classes of states. Here we identify an additional class of quantum states, for which bipartite enta nglement measures can be efficiently computed, providing new rigorous results. Such states are written in arbitrary $dtimes d$ dimensions, where each basis state in the subsystem A is paired with only one state in B. This new class, that we refer to as pair basis states, is remarkably relevant in many physical situations, including quantum optics. We find that negativity is a necessary and sufficient measure of entanglement for mixtures of states written in the same pair basis. We also provide analytical expressions for a tight lower-bound estimation of the entanglement of formation, a central quantity in quantum information.
We demonstrate that hidden long range order is always present in the gapped phases of interacting fermionic systems on one dimensional lattices. It is captured by correlation functions of appropriate nonlocal charge and/or spin operators, which remai n asymptotically finite. The corresponding microscopic orders are classified. The results are confirmed by DMRG numerical simulation of the phase diagram of the extended Hubbard model, and of a Haldane insulator phase.
Considerable efforts are currently devoted to the preparation of ultracold neutral atoms in the emblematic strongly correlated quantum Hall regime. The routes followed so far essentially rely on thermodynamics, i.e. imposing the proper Hamiltonian an d cooling the system towards its ground state. In rapidly rotating 2D harmonic traps the role of the transverse magnetic field is played by the angular velocity. For particle numbers significantly larger than unity, the required angular momentum is very large and it can be obtained only for spinning frequencies extremely near to the deconfinement limit; consequently, the required control on experimental parameters turns out to be far too stringent. Here we propose to follow instead a dynamic path starting from the gas confined in a rotating ring. The large moment of inertia of the fluid facilitates the access to states with a large angular momentum, corresponding to a giant vortex. The initial ring-shaped trapping potential is then adiabatically transformed into a harmonic confinement, which brings the interacting atomic gas in the desired quantum Hall regime. We provide clear numerical evidence that for a relatively broad range of initial angular frequencies, the giant vortex state is adiabatically connected to the bosonic $ u=1/2$ Laughlin state, and we discuss the scaling to many particles.
The repulsive one-dimensional Hubbard model with bond-charge interaction (HBC) in the superconducting regime is mapped onto the spin-1/2 XY model with transverse field. We calculate correlations and phase boundaries, realizing an excellent agreement with numerical results. The critical line for the superconducting transition is shown to coincide with the analytical factorization line identifying the commensurate-incommensurate transition in the XY model.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا