ترغب بنشر مسار تعليمي؟ اضغط هنا

Gravitino Dark Matter represents a compelling scenario in Supersymmetry, which brings together a variety of data from cosmology and collider physics. We discuss the constraints obtained from the LHC on supersymmetric models with gravitino dark matter and neutralino NLSP, which is the case most difficult to disentangle at colliders from a neutralino LSP forming DM. The phenomenological SUSY model with 19+1 free parameters is adopted. Results are obtained from broad scans of the phase space of these uncorrelated parameters. The relation between gravitino mass, gluino mass and reheating temperature as well as the derived constraints on these parameters are discussed in detail. This relation offers a unique opportunity to place stringent bounds on the cosmological model, within the gravitino dark matter scenario, from the results of the LHC searches in Run-2 and the planned High-Luminosity upgrade.
The discovery of a light Higgs boson at the LHC opens a broad program of studies and measurements to understand the role of this particle in connection with New Physics and Cosmology. Supersymmetry is the best motivated and most thoroughly formulated and investigated model of New Physics which predicts a light Higgs boson and can explain dark matter. This paper discusses how the study of the Higgs boson connects with the search for supersymmetry and for dark matter at the LHC and at a future $e^+e^-$ collider and with dedicated underground dark matter experiments.
This letter presents new results on the combined sensitivity of the LHC and underground dark matter search experiments to the lightest neutralino as WIMP candidate in the minimal Supersymmetric extension of the Standard Model. We show that monojet se arches significantly extend the sensitivity to the neutralino mass in scenarios where scalar quarks are nearly degenerate in mass with it. The inclusion of the latest bound by the LUX experiment on the neutralino-nucleon spin-independent scattering cross section expands this sensitivity further, highlighting the remarkable complementarity of jets/$ell$s+MET and monojet at LHC and dark matter searches in probing models of new physics with a dark matter candidate. The qualitative results of our study remain valid after accounting for theoretical uncertainties.
High energy hadron colliders have been the tools for discovery at the highest mass scales of the energy frontier from the SppS, to the Tevatron and now the LHC. This report reviews future hadron collider projects from the high luminosity LHC upgrade to a 100 TeV hadron collider in a large tunnel, the underlying technology challenges and R&D directions and presents a series of recommendations for the future development of hadron collider research and technology.
We revisit MSSM scenarios with light neutralino as a dark matter candidate in view of the latest LHC and dark matter direct and indirect detection experiments. We show that scenarios with a very light neutralino (~ 10 GeV) and a scalar bottom quark c lose in mass, can satisfy all the available constraints from LEP, Tevatron, LHC, flavour and low energy experiments and provide solutions in agreement with the bulk of dark matter direct detection experiments, and in particular with the recent CDMS results.
The determination of scalar lepton and gaugino masses is an important part of the programme of spectroscopic studies of Supersymmetry at a high energy e+e- linear collider. In this article we present results of a study of the processes: e+e- -> eR eR -> e+e- chi0 chi, e+e- -> muR muR -> mu mu- chi0 chi0, e+e- -> eL eL -> e e chi0 chi0 and e+e- -> snu_e snu_e -> e e chi+ chi-in two Supersymmetric benchmark scenarios at 3 TeV and 1.4 TeV at CLIC. We characterize the detector performance, lepton energy resolution and boson mass resolution. We report the accuracy of the production cross section measurements and the eR muR, snu_e, chi+ and chi0 mass determination, estimate the systematic errors affecting the mass measurement and discuss the requirements on the detector time stamping capability and beam polarization. The analysis accounts for the CLIC beam energy spectrum and the dominant beam-induced background. The detector performances are incorporated by full simulation and reconstruction of the events within the framework of the CLIC_ILD_CDR detector concept.
The search for heavy Higgs bosons is an essential step in the exploration of the Higgs sector and in probing the Supersymmetric parameter space. This paper discusses the constraints on the M(A) and tan beta parameters derived from the bounds on the d ifferent decay channels of the neutral H and A bosons accessible at the LHC, in the framework of the phenomenological MSSM. The implications from the present LHC results and the expected sensitivity of the 14 TeV data are discussed in terms of the coverage of the [M(A) - tan beta] plane. New channels becoming important at 13 and 14 TeV for low values of tan beta are characterised in terms of their kinematics and the reconstruction strategies. The effect of QCD systematics, SUSY loop effects and decays into pairs of SUSY particles on these constraints are discussed in details.
The search for the production of weakly-interacting SUSY particles at the LHC is crucial for testing supersymmetry in relation to dark matter. Decays of neutralinos into Higgs bosons occur over some significant part of the SUSY parameter space and re present the most important source of $h$ boson production in SUSY decay chains in the MSSM. We study h production in neutralino decays using scans of the phenomenological MSSM. Whilst in constrained MSSM scenarios the decay chi^0_2 -> h chi^0_1 is the dominant channel, this does not hold in more general MSSM scenarios. On the other hand, the chi^0_2,3 -> h chi^0_1 decays remain important and are highly complementary to multi-lepton final states in the LHC searches. The perspectives for the LHC analyses at 8 and 14 TeV as well as the reach of an e+e- collider at 0.5, 1, 1.5 and 3 TeV are discussed.
The determination of scalar leptons and gauginos masses is an important part of the program of spectroscopic studies of Supersymmetry at a high energy linear collider. In this talk we present results of a study of pair produced Scalar Electrons, Scal ar Muons and Scalar Neutrinos searches in a Supersymmetric scenario at 3 TeV at CLIC. We present the performances on the lepton energy resolution and report the expected accuracies on the production cross sections and on the scalar leptons and gauginos masses.
The determination of smuon and neutralino masses in smuon pair production is an important part of the program of spectroscopic studies of Supersymmetry at a high energy linear collider. In this note we report the first results of a study of e+e- -> ~ mu_R+ ~mu_R- in a high-mass, cosmology-motivated Supersymmetric scenario at 3 TeV at CLIC. This process is a good example to study requirements on the beam energy spectrum and polarisation and the track momentum resolution in a simple final state. We discuss the expected accuracy on the mass measurements as a function of the momentum resolution, luminosity spectrum, beam polarisation and time stamping capability. Results obtained at generator level are validated by comparison to full simulation and reconstruction. Preliminary requirements for the detector performances and beam polarisation are presented.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا