ترغب بنشر مسار تعليمي؟ اضغط هنا

Complementarity of WIMP Sensitivity with direct SUSY, Monojet and Dark Matter Searches in the MSSM

77   0   0.0 ( 0 )
 نشر من قبل Marco Battaglia
 تاريخ النشر 2013
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

This letter presents new results on the combined sensitivity of the LHC and underground dark matter search experiments to the lightest neutralino as WIMP candidate in the minimal Supersymmetric extension of the Standard Model. We show that monojet searches significantly extend the sensitivity to the neutralino mass in scenarios where scalar quarks are nearly degenerate in mass with it. The inclusion of the latest bound by the LUX experiment on the neutralino-nucleon spin-independent scattering cross section expands this sensitivity further, highlighting the remarkable complementarity of jets/$ell$s+MET and monojet at LHC and dark matter searches in probing models of new physics with a dark matter candidate. The qualitative results of our study remain valid after accounting for theoretical uncertainties.

قيم البحث

اقرأ أيضاً

The string theory landscape of vacua solutions provides physicists with some understanding as to the magnitude of the cosmological constant. Similar reasoning can be applied to the magnitude of the soft SUSY breaking terms in supersymmetric models of particle physics: there appears to be a statistical draw towards large soft terms which is tempered by the anthropic requirement of the weak scale lying not too far from ~100 GeV. For a mild statistical draw of m_{soft}^n with n=1 (as expected from SUSY breaking due to a single F term) then the light Higgs mass is preferred at ~125 GeV while sparticles are all pulled beyond LHC bounds. We confront a variety of LHC and WIMP dark matter search limits with the statistical expectations from a fertile patch of string theory landscape. The end result is that LHC and WIMP dark matter detectors see exactly that which is expected from the string theory landscape: a Standard Model-like Higgs boson of mass 125 GeV but as yet no sign of sparticles or WIMP dark matter. SUSY from the n=1 landscape is most likely to emerge at LHC in the soft opposite-sign dilepton plus jet plus MET channel. Multi-ton noble liquid WIMP detectors should be able to completely explore the n=1 landscape parameter space.
As is well known, the search for and eventual identification of dark matter in supersymmetry requires a simultaneous, multi-pronged approach with important roles played by the LHC as well as both direct and indirect dark matter detection experiments. We examine the capabilities of these approaches in the 19-parameter p(henomenological)MSSM which provides a general framework for complementarity studies of neutralino dark matter. We summarize the sensitivity of dark matter searches at the 7, 8 (and eventually 14) TeV LHC, combined with those by Fermi, CTA, IceCube/DeepCore, COUPP, LZ and XENON. The strengths and weaknesses of each of these techniques are examined and contrasted and their interdependent roles in covering the model parameter space are discussed in detail. We find that these approaches explore orthogonal territory and that advances in each are necessary to cover the Supersymmetric WIMP parameter space. We also find that different experiments have widely varying sensitivities to the various dark matter annihilation mechanisms, some of which would be completely excluded by null results from these experiments.
We consider minimal dark matter scenarios featuring momentum-dependent couplings of the dark sector to the Standard Model. We derive constraints from existing LHC searches in the monojet channel, estimate the future LHC sensitivity for an integrated luminosity of 300 fb$^{-1}$, and compare with models exhibiting conventional momentum-independent interactions with the dark sector. In addition to being well motivated by (composite) pseudo-Goldstone dark matter scenarios, momentum-dependent couplings are interesting as they weaken direct detection constraints. For a specific dark matter mass, the LHC turns out to be sensitive to smaller signal cross-sections in the momentum-dependent case, by virtue of the harder jet transverse-momentum distribution.
The search for and identification of neutralino dark matter in supersymmetry requires a multi-pronged approach with important roles played by collider, direct and indirect dark matter detection experiments. In this report, we summarize the sensitivit y of such searches at the 7, 8 (and eventually 14) TeV LHC, combined with those by Fermi, CTA, IceCube/DeepCore, COUPP and XENON1T, to such particles within the context of the 19-parameter p(henomenological)MSSM. This report provides an outline of the current status of our results and our expectations for future analyses.
We study the possibility of identifying dark matter properties from XENON-like 100 kg experiments and the GLAST satellite mission. We show that whereas direct detection experiments will probe efficiently light WIMPs, given a positive detection (at th e 10% level for $m_{chi} lesssim 50$ GeV), GLAST will be able to confirm and even increase the precision in the case of a NFW profile, for a WIMP-nucleon cross-section $sigma_{chi-p} lesssim 10^{-8}$ pb. We also predict the rate of production of a WIMP in the next generation of colliders (ILC), and compare their sensitivity to the WIMP mass with the XENON and GLAST projects.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا