ترغب بنشر مسار تعليمي؟ اضغط هنا

Room-temperature Fermi-Dirac electron thermal excitation in conventional three-dimensional (3D) or two-dimensional (2D) semiconductors generates hot electrons with a relatively long thermal tail in energy distribution. These hot electrons set a funda mental obstacle known as the Boltzmann tyranny that limits the subthreshold swing (SS) and therefore the minimum power consumption of 3D and 2D field-effect transistors (FETs). Here, we investigated a novel graphene (Gr)-enabled cold electron injection where the Gr acts as the Dirac source to provide the cold electrons with a localized electron density distribution and a short thermal tail at room temperature. These cold electrons correspond to an electronic cooling effect with the effective electron temperature of ~145 K in the monolayer MoS2, which enable the transport factor lowering and thus the steep-slope switching (across for 3 decades with a minimum SS of 29 mV/decade at room temperature) for a monolayer MoS2 FET. Especially, a record-high sub-60-mV/decade current density (over 1 {mu}A/{mu}m) can be achieved compared to conventional steep-slope technologies such as tunneling FETs or negative capacitance FETs using 2D or 3D channel materials. Our work demonstrates the great potential of 2D Dirac-source cold electron transistor as an innovative steep-slope transistor concept, and provides new opportunities for 2D materials toward future energy-efficient nanoelectronics.
High contact resistance is one of the primary concerns for electronic device applications of two-dimensional (2D) layered semiconductors. Here, we explore the enhanced carrier transport through metal-semiconductor interfaces in WS2 field effect trans istors (FETs) by introducing a typical transition metal, Cu, with two different doping strategies: (i) a generalized Cu doping by using randomly distributed Cu atoms along the channel and (ii) a localized Cu doping by adapting an ultrathin Cu layer at the metal-semiconductor interface. Compared to the pristine WS2 FETs, both the generalized Cu atomic dopant and localized Cu contact decoration can provide a Schottky-to-Ohmic contact transition owing to the reduced contact resistances by 1 - 3 orders of magnitude, and consequently elevate electron mobilities by 5 - 7 times higher. Our work demonstrates that the introduction of transition metal can be an efficient and reliable technique to enhance the carrier transport and device performance in 2D TMD FETs.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا