ﻻ يوجد ملخص باللغة العربية
Room-temperature Fermi-Dirac electron thermal excitation in conventional three-dimensional (3D) or two-dimensional (2D) semiconductors generates hot electrons with a relatively long thermal tail in energy distribution. These hot electrons set a fundamental obstacle known as the Boltzmann tyranny that limits the subthreshold swing (SS) and therefore the minimum power consumption of 3D and 2D field-effect transistors (FETs). Here, we investigated a novel graphene (Gr)-enabled cold electron injection where the Gr acts as the Dirac source to provide the cold electrons with a localized electron density distribution and a short thermal tail at room temperature. These cold electrons correspond to an electronic cooling effect with the effective electron temperature of ~145 K in the monolayer MoS2, which enable the transport factor lowering and thus the steep-slope switching (across for 3 decades with a minimum SS of 29 mV/decade at room temperature) for a monolayer MoS2 FET. Especially, a record-high sub-60-mV/decade current density (over 1 {mu}A/{mu}m) can be achieved compared to conventional steep-slope technologies such as tunneling FETs or negative capacitance FETs using 2D or 3D channel materials. Our work demonstrates the great potential of 2D Dirac-source cold electron transistor as an innovative steep-slope transistor concept, and provides new opportunities for 2D materials toward future energy-efficient nanoelectronics.
The so-called Boltzmann Tyranny defines the fundamental thermionic limit of the subthreshold slope (SS) of a metal-oxide-semiconductor field-effect transistor (MOSFET) at 60 mV/dec at room temperature and, therefore, precludes the lowering of the sup
We report on graphene-like mechanical exfoliation of thin films of titanium ditelluride and investigation of their electronic properties. The exfoliated crystalline TiTe2 films were used as the channel layers in the back-gated field-effect transistor
Gas permeation through nanoscale pores is ubiquitous in nature and plays an important role in a plethora of technologies. Because the pore size is typically smaller than the mean free path of gas molecules, their flow is conventionally described by t
We propose a steep-slope MoS2-nanoribbon field-effect transistor that exploits a narrow-energy conduction band to intrinsically filter out the thermionic tail of the electron energy distribution. We study the device operation principle and the perfor
In electron field emission experiments, a linear relationship in plots of slope vs. intercept obtained from Fowler-Nordheim analysis is commonly observed for single tips or tip arrays. By simulating samples with many tips, it is shown here that the o