ترغب بنشر مسار تعليمي؟ اضغط هنا

48 - Tao Liu , Mang Feng , Lei Li 2012
We explore the spin-boson model in a special case, i.e., with zero local field. In contrast to previous studies, we find no possibility for quantum phase transition (QPT) happening between the localized and delocalized phases, and the behavior of the model can be fully characterized by the even or odd parity as well as the parity breaking, instead of the QPT, owned by the ground state of the system. Our analytical treatment about the eigensolution of the ground state of the model presents for the first time a rigorous proof of no-degeneracy for the ground state of the model, which is independent of the bath type, the degrees of freedom of the bath and the calculation precision. We argue that the QPT mentioned previously appears due to unreasonable treatment of the ground state of the model or of the infrared divergence existing in the spectral functions for Ohmic and sub-Ohmic dissipations.
46 - Tao Liu , Mang Feng , Lei Li 2012
We study the breaking of parity in the spin-boson model and demonstrate unique scaling behavior of the magnetization and entanglement around the critical points for the parity breaking after suppressing the infrared divergence existing inherently in the spectral functions for Ohmic and sub-Ohmic dissipations. Our treatment is basically analytical and of generality for all types of the bath. We argue that the conventionally employed spectral function is not fully reasonable and the previous justification of quantum phase transition for localization needs to be more seriously reexamined.
512 - Jun-Hong An , Mang Feng , 2009
We microscopically model the decoherence dynamics of entangled coherent states under the influence of vacuum fluctuation. We derive an exact master equation with time-dependent coefficients reflecting the memory effect of the environment, by using th e Feynman-Vernon influence functional theory in the coherent-state representation. Under the Markovian approximation, our master equation recovers the widely used Lindblad equation in quantum optics. We then investigate the non-Markovian entanglement dynamics of the quantum channel in terms of the entangled coherent states under noise. Compared with the results in Markovian limit, it shows that the non-Markovian effect enhances the disentanglement to the initially entangled coherent state. Our analysis also shows that the decoherence behaviors of the entangled coherent states depend sensitively on the symmetrical properties of the entangled coherent states as well as the interactions between the system and the environment.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا