ترغب بنشر مسار تعليمي؟ اضغط هنا

86 - Manda Banerji 2014
We present the combination of optical data from the Science Verification phase of the Dark Energy Survey (DES) with near infrared data from the ESO VISTA Hemisphere Survey (VHS). The deep optical detections from DES are used to extract fluxes and ass ociated errors from the shallower VHS data. Joint 7-band ($grizYJK$) photometric catalogues are produced in a single 3 sq-deg DECam field centred at 02h26m$-$04d36m where the availability of ancillary multi-wavelength photometry and spectroscopy allows us to test the data quality. Dual photometry increases the number of DES galaxies with measured VHS fluxes by a factor of $sim$4.5 relative to a simple catalogue level matching and results in a $sim$1.5 mag increase in the 80% completeness limit of the NIR data. Almost 70% of DES sources have useful NIR flux measurements in this initial catalogue. Photometric redshifts are estimated for a subset of galaxies with spectroscopic redshifts and initial results, although currently limited by small number statistics, indicate that the VHS data can help reduce the photometric redshift scatter at both $z<0.5$ and $z>1$. We present example DES+VHS colour selection criteria for high redshift Luminous Red Galaxies (LRGs) at $zsim0.7$ as well as luminous quasars. Using spectroscopic observations in this field we show that the additional VHS fluxes enable a cleaner selection of both populations with $<$10% contamination from galactic stars in the case of spectroscopically confirmed quasars and $<0.5%$ contamination from galactic stars in the case of spectroscopically confirmed LRGs. The combined DES+VHS dataset, which will eventually cover almost 5000 sq-deg, will therefore enable a range of new science and be ideally suited for target selection for future wide-field spectroscopic surveys.
We characterise the stellar masses and star formation rates in a sample of almost 40000 spectroscopically confirmed UV luminous galaxies at 0.3<z<1.0 selected from within the WiggleZ Dark Energy Survey. In particular, we match this UV bright populati on to wide-field infrared surveys such as the near infrared UKIDSS LAS and the mid infrared WISE All-Sky Survey. We find that ~30% of the UV luminous WiggleZ galaxies are detected at >5sigma in the UKIDSS-LAS at all redshifts. An even more luminous subset of 15% are also detected in the WISE 3.4 and 4.6um bands. We compute stellar masses for this very large sample of extremely blue galaxies and quantify the sensitivity of the stellar mass estimates to various assumptions made during the SED fitting. The median stellar masses are log10(M*/M0)=9.6pm0.7, 10.2pm0.5 and 10.4pm0.4 for the IR-undetected, UKIDSS detected and UKIDSS+WISE detected galaxies respectively. We demonstrate that the inclusion of NIR photometry can lead to tighter constraints on the stellar masses. The mass estimates are found to be most sensitive to the inclusion of secondary bursts of star formation as well as changes in the stellar population synthesis models, both of which can lead to median discrepancies of the order of 0.3dex in the stellar masses. We find that the best-fit M/LK is significantly lower (by ~0.4 dex) than that predicted by simple optical colour based estimators, in particular for the bluer galaxies with younger best-fit ages. The WiggleZ galaxies have star formation rates of 3-10 M0/yr and mostly lie at the upper end of the main sequence of star-forming galaxies at these redshifts. Their rest-frame UV luminosities and stellar masses are comparable to both local compact UV-luminous galaxies as well as Lyman break galaxies at z~2-3.(abridged)
56 - Manda Banerji 2008
We investigate the physical and chemical conditions necessary for low-mass star formation in extragalactic environments by calculating various characteristic timescales associated with star formation for a range of initial conditions. The balance of these timescales indicates whether low-mass star formation is enhanced or inhibited under certain physical conditions. In this study, we consider timescales for free-fall, cooling, freeze-out, desorption, chemistry and ambipolar diffusion and their variations with changes in the gas density, metallicity, cosmic ray ionisation rate and FUV radiation field strength. We find that extragalactic systems with high FUV radiation field strengths and high cosmic ray fluxes considered at a range of metallicities, are likely to have enhanced low-mass star formation unless the magnetic pressure is sufficient to halt collapse. Our results indicate that this is only likely to be the case for high-redshift galaxies approaching solar metallicities. Unless this is true for all high-redshift sources, this study finds little evidence for a high-mass biased IMF at high redshifts.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا