ترغب بنشر مسار تعليمي؟ اضغط هنا

The Stellar Masses of ~40,000 UV Selected Galaxies from the WiggleZ Survey at 0.3<z<1.0: Analogues of Lyman Break Galaxies?

158   0   0.0 ( 0 )
 نشر من قبل Manda Banerji
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We characterise the stellar masses and star formation rates in a sample of almost 40000 spectroscopically confirmed UV luminous galaxies at 0.3<z<1.0 selected from within the WiggleZ Dark Energy Survey. In particular, we match this UV bright population to wide-field infrared surveys such as the near infrared UKIDSS LAS and the mid infrared WISE All-Sky Survey. We find that ~30% of the UV luminous WiggleZ galaxies are detected at >5sigma in the UKIDSS-LAS at all redshifts. An even more luminous subset of 15% are also detected in the WISE 3.4 and 4.6um bands. We compute stellar masses for this very large sample of extremely blue galaxies and quantify the sensitivity of the stellar mass estimates to various assumptions made during the SED fitting. The median stellar masses are log10(M*/M0)=9.6pm0.7, 10.2pm0.5 and 10.4pm0.4 for the IR-undetected, UKIDSS detected and UKIDSS+WISE detected galaxies respectively. We demonstrate that the inclusion of NIR photometry can lead to tighter constraints on the stellar masses. The mass estimates are found to be most sensitive to the inclusion of secondary bursts of star formation as well as changes in the stellar population synthesis models, both of which can lead to median discrepancies of the order of 0.3dex in the stellar masses. We find that the best-fit M/LK is significantly lower (by ~0.4 dex) than that predicted by simple optical colour based estimators, in particular for the bluer galaxies with younger best-fit ages. The WiggleZ galaxies have star formation rates of 3-10 M0/yr and mostly lie at the upper end of the main sequence of star-forming galaxies at these redshifts. Their rest-frame UV luminosities and stellar masses are comparable to both local compact UV-luminous galaxies as well as Lyman break galaxies at z~2-3.(abridged)

قيم البحث

اقرأ أيضاً

124 - I. Oteo , A. Bongiovanni , J. Cepa 2013
We take advantage of the exceptional photometric coverage provided by the combination of GALEX data in the UV and the ALHAMBRA survey in the optical and near-IR to analyze the physical properties of a sample of 1225 GALEX-selected Lyman break galaxie s (LBGs) at $0.8 lesssim z lesssim 1.2$ located in the COSMOS field. This is the largest sample of LBGs studied at that redshift range so far. According to a spectral energy distribution (SED) fitting with synthetic stellar population templates, we find that LBGs at $z sim 1$ are mostly young galaxies with a median age of 341 Myr and have intermediate dust attenuation, $ < E_s (B-V) > sim 0.20$. Due to their selection criterion, LBGs at $z sim 1$ are UV-bright galaxies and have high dust-corrected total SFR, with a median value of 16.9 $M_odot {rm yr}^{-1}$. Their median stellar mass is $log{left(M_*/M_odot right)} = 9.74$. We obtain that the dust-corrected total SFR of LBGs increases with stellar mass and the specific SFR is lower for more massive galaxies. Only 2% of the galaxies selected through the Lyman break criterion have an AGN nature. LBGs at $z sim 1$ are mostly located over the blue cloud of the color-magnitude diagram of galaxies at their redshift, with only the oldest and/or the dustiest deviating towards the green valley and red sequence. Morphologically, 69% of LBGs are disk-like galaxies, with the fraction of interacting, compact, or irregular systems being much lower, below 12%. LBGs have a median effective radius of 2.5 kpc and bigger galaxies have higher total SFR and stellar mass. Comparing to their high-redshift analogues, we find evidence that LBGs at lower redshifts are bigger, redder in the UV continuum, and have a major presence of older stellar populations in their SEDs. However, we do not find significant difference in the distributions of stellar mass or dust attenuation.
140 - V. Tilvi 2013
Star-forming galaxies at redshifts z>6 are likely responsible for the reionization of the universe, and it is important to study the nature of these galaxies. We present three candidates for z~7 Lyman-break galaxies (LBGs) from a 155 arcmin^2 area in the CANDELS/COSMOS field imaged by the deep FourStar Galaxy Evolution (zFourGE) survey. The FourStar medium-band filters provide the equivalent of R~10 spectroscopy, which cleanly distinguishes between z~7 LBGs and brown dwarf stars. The distinction between stars and galaxies based on an objects angular size can become unreliable even when using HST imaging; there exists at least one very compact z~7 candidate (FWHM~0.5-1 kpc) that is indistinguishable from a point source. The medium-band filters provide narrower redshift distributions compared with broad-band-derived redshifts. The UV luminosity function derived using the three z~7 candidates is consistent with previous studies, suggesting an evolution at the bright end (MUV -21.6 mag) from z~7 to z~5. Fitting the galaxies spectral energy distributions, we predict Lyman-alpha equivalent widths for the two brightest LBGs, and find that the presence of a Lyman-alpha line affects the medium-band flux thereby changing the constraints on stellar masses and UV spectral slopes. This illustrates the limitations of deriving LBG properties using only broad-band photometry. The derived specific star-formation rates for the bright LBGs are ~13 per Gyr, slightly higher than the lower-luminosity LBGs, implying that the star-formation rate increases with stellar mass for these galaxies.
116 - R. A. Overzier , X. Shu , W. Zheng 2009
We present new information on galaxies in the vicinity of luminous radio galaxies and quasars at z=4,5,6. These fields were previously found to contain overdensities of Lyman Break Galaxies (LBGs) or spectroscopic Lyman alpha emitters. We use HST and Spitzer data to infer stellar masses, and contrast our results with large samples of LBGs in more average environments as probed by the Great Observatories Origins Deep Survey (GOODS). The following results were obtained. First, LBGs in both overdense regions and in the field at z=4-5 lie on a very similar sequence in a z-[3.6] versus [3.6] color-magnitude diagram. This is interpreted as a sequence in stellar mass (log[M*/Msun] = 9-11) in which galaxies become increasingly red due to dust and age as their star formation rate (SFR) increases. Second, the two radio galaxies are among the most massive objects (log[M*/Msun]~11) known to exist at z~4-5, and are extremely rare based on the low number density of such objects as estimated from the ~25x larger area GOODS survey. We suggest that the presence of these massive galaxies and supermassive black holes has been boosted through rapid accretion of gas or merging inside overdense regions. Third, the total stellar mass found in the z=4 ``proto-cluster TN1338 accounts for <30% of the stellar mass on the cluster red sequence expected to have formed at z>4, based on a comparison with the massive X-ray cluster Cl1252 at z=1.2. Although future near-infrared observations should determine whether any massive galaxies are currently being missed, one possible explanation for this mass difference is that TN1338 evolves into a smaller cluster than Cl1252. This raises the interesting question of whether the most massive protocluster regions at z>4 remain yet to be discovered.
We report the PACS-100um/160um detections of a sample of 42 GALEX-selected and FIR-detected Lyman break galaxies (LBGs) at z ~ 1 located in the COSMOS field and analyze their ultra-violet (UV) to far-infrared (FIR) properties. The detection of these LBGs in the FIR indicates that they have a dust content high enough so that its emission can be directly detected. According to a spectral energy distribution (SED) fitting with stellar population templates to their UV-to-near-IR observed photometry, PACS-detected LBGs tend to be bigger, more massive, dustier, redder in the UV continuum, and UV-brighter than PACS-undetected LBGs. PACS-detected LBGs at z ~ 1 are mostly disk-like galaxies and are located over the green-valley and red sequence of the color-magnitude diagram of galaxies at their redshift. By using their UV and IR emission, we find that PACS-detected LBGs tend to be less dusty and have slightly higher total star-formation rates (SFRs) than other PACS-detected UV-selected galaxies within their same redshift range. As a consequence of the selection effect due to the depth of the FIR observations employed, all our PACS-detected LBGs are LIRGs. However, none of them are in the ULIRG regime, where the FIR observations are complete. The finding of ULIRGs-LBGs at higher redshifts suggests an evolution of the FIR emission of LBGs with cosmic time. In an IRX-$beta$ diagram, PACS-detected LBGs at z ~ 1 tend to be located around the relation for local starburst similarly to other UV-selected PACS-detected galaxies at their same redshift. Consequently, the dust-correction factors obtained with their UV continuum slope allow to determine their total SFR, unlike at higher redshifts. However, the dust attenuation derived from UV to NIR SED fitting overestimates the total SFR for most of our PACS-detected LBGs in age-dependent way: the overestimation factor is higher in younger galaxies.
We present results of optical spectroscopic observations of candidates of Lyman Break Galaxies (LBGs) at $z sim 5$ in the region including the GOODS-N and the J0053+1234 region by using GMOS-N and GMOS-S, respectively. Among 25 candidates, five objec ts are identified to be at $z sim 5$ (two of them were already identified by an earlier study) and one object very close to the color-selection window turned out to be a foreground galaxy. With this spectroscopically identified sample and those from previous studies, we derived the lower limits on the number density of bright ($M_{UV}<-22.0$ mag) LBGs at $z sim 5$. These lower limits are comparable to or slightly smaller than the number densities of UV luminosity functions (UVLFs) that show the smaller number density among $z sim 5$ UVLFs in literature. However, by considering that there remain many LBG candidates without spectroscopic observations, the number density of bright LBGs is expected to increase by a factor of two or more. The evidence for the deficiency of UV luminous LBGs with large Ly$alpha$ equivalent widths was reinforced. We discuss possible causes for the deficiency and prefer the interpretation of dust absorption.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا