ترغب بنشر مسار تعليمي؟ اضغط هنا

52 - Maica Clavel 2014
The supermassive black hole at the Galactic center, Sagittarius A*, has experienced periods of higher activity in the past. The reflection of these past outbursts is observed in the molecular material surrounding the black hole but reconstructing its precise lightcurve is difficult since the distribution of the clouds along the line of sight is poorly constrained. Using Chandra high-resolution data collected from 1999 to 2011 we studied both the 6.4 keV and the 4-8 keV emission of the region located between Sgr A* and the Radio Arc, characterizing its variations down to 15 angular scale and 1-year time scale. The emission from the molecular clouds in the region varies significantly, showing either a 2-year peaked emission or 10-year linear variations. This is the first time that such fast variations are measured. Based on the cloud parameters, we conclude that these two behaviors are likely due to two distinct past outbursts of Sgr A* during which its luminosity rose to at least 10^39 erg/s.
212 - Maica Clavel 2014
The origin of the iron fluorescent line at 6.4 keV from an extended region surrounding the Arches cluster is debated and the non-variability of this emission up to 2009 has favored the low-energy cosmic-ray origin over a possible irradiation by hard X-rays. By probing the variability of the Arches cloud non-thermal emission in the most recent years, including a deep observation in 2012, we intend to discriminate between the two competing scenarios. We perform a spectral fit of XMM-Newton observations collected from 2000 to 2013 in order to build the Arches cloud lightcurve corresponding to both the neutral Fe Kalpha line and the X-ray continuum emissions. We reveal a 30% flux drop in 2012, detected with more than 4 sigma significance for both components. This implies that a large fraction of the studied non-thermal emission is due to the reflection of an X-ray transient source.
67 - Maica Clavel 2013
The relatively rapid spatial and temporal variability of the X-ray radiation from some molecular clouds near the Galactic center shows that this emission component is due to the reflection of X-rays generated by a source that was luminous in the past , most likely the central supermassive black hole, Sagittarius A*. Studying the evolution of the molecular cloud reflection features is therefore a key element to reconstruct Sgr A*s past activity. The aim of the present work is to study this emission on small angular scales in order to characterize the source outburst on short time scales. We use Chandra high-resolution data collected from 1999 to 2011 to study the most rapid variations detected so far, those of clouds between 5 and 20 from Sgr A* towards positive longitudes. Our systematic spectral-imaging analysis of the reflection emission, notably of the Fe Kalpha line at 6.4 keV and its associated 4-8 keV continuum, allows us to characterize the variations down to 15 angular scale and 1-year time scale. We reveal for the first time abrupt variations of few years only and in particular a short peaked emission, with a factor of 10 increase followed by a comparable decrease, that propagates along the dense filaments of the Bridge cloud. This 2-year peaked feature contrasts with the slower 10-year linear variations we reveal in all the other molecular structures of the region. Based on column density constraints, we argue that these two different behaviors are unlikely to be due to the same illuminating event. The variations are likely due to a highly variable active phase of Sgr A* sometime within the past few hundred years, characterized by at least two luminous outbursts of a few-year time scale and during which the Sgr A* luminosity went up to at least 10^39 erg/s.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا