ترغب بنشر مسار تعليمي؟ اضغط هنا

181 - M.V. Pavlov , R.F. Vitolo 2018
The Oriented Associativity equation plays a fundamental role in the theory of Integrable Systems. In this paper we prove that the equation, besides being Hamiltonian with respect to a first-order Hamiltonian operator, has a third-order non-local homo geneous Hamiltonian operator belonging to a class which has been recently studied, thus providing a highly non-trivial example in that class and showing intriguing connections with algebraic geometry.
Based on the theory of Poisson vertex algebras we calculate skew-symmetry conditions and Jacobi identities for a class of third-order nonlocal operators of differential-geometric type. Hamiltonian operators within this class are defined by a Monge me tric and a skew-symmetric two-form satisfying a number of differential-geometric constraints. Complete classification results in the 2-component and 3-component cases are obtained.
We investigate $n$-component systems of conservation laws that possess third-order Hamiltonian structures of differential-geometric type. The classification of such systems is reduced to the projective classification of linear congruences of lines in $mathbb{P}^{n+2}$ satisfying additional geometric constraints. Algebraically, the problem can be reformulated as follows: for a vector space $W$ of dimension $n+2$, classify $n$-tuples of skew-symmetric 2-forms $A^{alpha} in Lambda^2(W)$ such that [ phi_{beta gamma}A^{beta}wedge A^{gamma}=0, ] for some non-degenerate symmetric $phi$.
Three dimensional nonlinear wave interactions have been analytically described. The procedure under interest can be applied to three dimensional quasilinear systems of first order, whose hydrodynamic reductions are homogeneous semi-Hamiltonian hydrod ynamic type systems (i.e. possess a diagonal form and infinitely many conservation laws). The interaction of N waves was studied. In particular we prove that they behave like simple waves and they distort after the collision region. The amount of the distortion can be analytically computed.
81 - M.V. Pavlov , R.F. Vitolo 2016
The Lagrangian representation of multi-Hamiltonian PDEs has been introduced by Y. Nutku and one of us (MVP). In this paper we focus on systems which are (at least) bi-Hamiltonian by a pair $A_1$, $A_2$, where $A_1$ is a hydrodynamic-type Hamiltonian operator. We prove that finding the Lagrangian representation is equivalent to finding a generalized vector field $tau$ such that $A_2=L_tau A_1$. We use this result in order to find the Lagrangian representation when $A_2$ is a homogeneous third-order Hamiltonian operator, although the method that we use can be applied to any other homogeneous Hamiltonian operator. As an example we provide the Lagrangian representation of a WDVV hydrodynamic-type system in $3$ components.
Let $V$ be a vector space of dimension $n+1$. We demonstrate that $n$-component third-order Hamiltonian operators of differential-geometric type are parametrised by the algebraic variety of elements of rank $n$ in $S^2(Lambda^2V)$ that lie in the ker nel of the natural map $S^2(Lambda^2V)to Lambda^4V$. Non-equivalent operators correspond to different orbits of the natural action of $SL(n+1)$. Based on this result, we obtain a classification of such operators for $nleq 4$.
91 - M.V. Pavlov , R.F. Vitolo 2014
We consider the WDVV associativity equations in the four dimensional case. These nonlinear equations of third order can be written as a pair of six component commuting two-dimensional non-diagonalizable hydrodynamic type systems. We prove that these systems possess a compatible pair of local homogeneous Hamiltonian structures of Dubrovin--Novikov type (of first and third order, respectively).
We define a new class of solutions to the WDVV associativity equations. This class is determined by the property that one of the commuting PDEs associated with such a WDVV solution is linearly degenerate. We reduce the problem of classifying such sol utions of the WDVV equations to the particular case of the so-called algebraic Riccati equation and, in this way, arrive at a complete classification of irreducible solutions.
We introduce and study a new class of kinetic equations, which arise in the description of nonequilibrium macroscopic dynamics of soliton gases with elastic collisions between solitons. These equations represent nonlinear integro-differential systems and have a novel structure, which we investigate by studying in detail the class of $N$-component `cold-gas hydrodynamic reductions. We prove that these reductions represent integrable linearly degenerate hydrodynamic type systems for arbitrary $N$ which is a strong evidence in favour of integrability of the full kinetic equation. We derive compact explicit representations for the Riemann invariants and characteristic velocities of the hydrodynamic reductions in terms of the `cold-gas component densities and construct a number of exact solutions having special properties (quasi-periodic, self-similar). Hydrodynamic symmetries are then derived and investigated. The obtained results shed the light on the structure of a continuum limit for a large class of integrable systems of hydrodynamic type and are also relevant to the description of turbulent motion in conservative compressible flows.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا