ترغب بنشر مسار تعليمي؟ اضغط هنا

73 - M.Revnivtsev 2010
We analyze a flux-limited sample of persistent and bright (with 2-10 keV fluxes exceeding 1.4e-10 erg/s/cm2) low-mass X-ray binaries (LMXBs) in our Galaxy. It is demonstrated that the majority of binary systems with X-ray luminosities below logL(erg/ sec)~37.3 have unevolved secondary companions (except for those with white dwarf donors), while systems with higher X-ray luminosity predominantly harbor giant donors. Mass transfer in binary systems with giants significantly shortens their life time thus steepening the X-ray luminosity function of LMXBs at high luminosity. We argue that this is the reason why the LMXB luminosity function constructed in the last years from observations of sources in our and distant galaxies demonstrates a break at logL(erg/sec)~37.3.
219 - M.Revnivtsev 2008
We have optically identified a recently discovered INTEGRAL source, IGR J08390--4833, with a cataclysmic variable, i.e. an accreting white dwarf in a binary system. The spectrum exhibits a rising blue continuum together with Balmer and HeII emission lines. Analysis of the light curve of the source shows clear presence of intrinsic variability on a time scale of the order of an hour, although we do not claim that this variability is periodic. Therefore we are not yet able to classify the object into a specific CV subclass.
We measure the spatial distribution and hard X-ray luminosity function of cataclysmic variables (CVs) using the INTEGRAL all-sky survey in the 17-60 keV energy band. The vast majority of the INTEGRAL detected CVs are intermediate polars with luminosi ties in the range 10^{32}-10^{34} erg/sec. The scale height of the Galactic disk population of CVs is found to be 130{+90}{-50} pc. The CV luminosity function measured with INTEGRAL in hard X-rays is compatible with that previously determined at lower energies (3--20 keV) using a largely independent sample of sources detected by RXTE (located at |b|>10deg as opposed to the INTEGRAL sample, strongly concentrated to the Galactic plane). The cumulative 17-60 keV luminosity density of CVs per unit stellar mass is found to be (1.3+/-0.3)x10^{27} erg/sec/Msun and is thus comparable to that of low-mass X-ray binaries in this energy band. Therefore, faint but numerous CVs are expected to provide an important contribution to the cumulative hard X-ray emission of galaxies.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا