ترغب بنشر مسار تعليمي؟ اضغط هنا

Semi-exclusive and exclusive processes are becoming more and more important in high energy physics since they are excellently suited to study the internal hadronic structure. To analyze such processes the knowledge of the hadron distribution amplitud es, which are universal for different reactions, is essential. Only rather indirect information on these nonperturbative functions can be obtained from measurements. In this work we report on a lattice QCD computation of moments of nucleon distribution amplitudes using suitable three-quark operators. However, these operators have to be renormalized and the mixing is even more complicated than in the continuum. Using the symmetry group of the hypercubic lattice we therefore derive and implement irreducibly transforming three-quark operators, which allow us to control the mixing pattern and will finally lead to quantitative predictions in the MSbar scheme. We present preliminary results for leading-twist and next-to-leading twist nucleon distribution amplitudes based on the QCDSF/UKQCD simulations with 2 flavors of dynamical clover fermions.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا