ترغب بنشر مسار تعليمي؟ اضغط هنا

Moments of nucleon distribution amplitudes from irreducible three-quark operators

219   0   0.0 ( 0 )
 نشر من قبل Nikolaus Warkentin
 تاريخ النشر 2007
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Semi-exclusive and exclusive processes are becoming more and more important in high energy physics since they are excellently suited to study the internal hadronic structure. To analyze such processes the knowledge of the hadron distribution amplitudes, which are universal for different reactions, is essential. Only rather indirect information on these nonperturbative functions can be obtained from measurements. In this work we report on a lattice QCD computation of moments of nucleon distribution amplitudes using suitable three-quark operators. However, these operators have to be renormalized and the mixing is even more complicated than in the continuum. Using the symmetry group of the hypercubic lattice we therefore derive and implement irreducibly transforming three-quark operators, which allow us to control the mixing pattern and will finally lead to quantitative predictions in the MSbar scheme. We present preliminary results for leading-twist and next-to-leading twist nucleon distribution amplitudes based on the QCDSF/UKQCD simulations with 2 flavors of dynamical clover fermions.

قيم البحث

اقرأ أيضاً

Based on lattice simulations with two flavours of dynamical, O(a)-improved Wilson fermions we present results for the first two moments of the distribution amplitudes of pseudoscalar mesons at several values of the valence quark masses. By extrapolat ing our results to the physical masses of up/down and strange quarks, we find the first two moments of the K^+ distribution amplitude and the second moment of the pi^+ distribution amplitude. We use nonperturbatively determined renormalisation coefficients to obtain results in the MSbar scheme. At a scale of 4 GeV^2 we find a_2^pi=0.201(114) for the second Gegenbauer moment of the pions distribution amplitude, while for the kaon, a_1^K=0.0453(9)(29) and a_2^K=0.175(18)(47).
We present the results of a lattice study of light-cone distribution amplitudes (DAs) of the nucleon and negative parity nucleon resonances using two flavors of dynamical (clover) fermions on lattices of different volumes and pion masses down to m_pi = 150 MeV. We find that the three valence quarks in the proton share their momentum in the proportion 37% : 31% : 31%, where the larger fraction corresponds to the u-quark that carries proton helicity, and determine the value of the wave function at the origin in position space, which turns out to be small compared to the existing estimates based on QCD sum rules. Higher-order moments are constrained by our data and are all compatible with zero within our uncertainties. We also calculate the normalization constants of the higher-twist DAs that are related to the distribution of quark angular momentum. Furthermore, we use the variational method and customized parity projection operators to study the states with negative parity. In this way we are able to separate the contributions of the two lowest states that, as we argue, possibly correspond to N*(1535) and a mixture of N*(1650) and the pion-nucleon continuum, respectively. It turns out that the state that we identify with N*(1535) has a very different DA as compared to both the second observed negative parity state and the nucleon, which may explain the difference in the decay patterns of N*(1535) and N*(1650) observed in experiment.
High luminosity accelerators have greatly increased the interest in semi-exclusive and exclusive reactions involving nucleons. The relevant theoretical information is contained in the nucleon wavefunction and can be parametrized by moments of the nuc leon distribution amplitudes, which in turn are linked to matrix elements of local three-quark operators. These can be calculated from first principles in lattice QCD. Defining an RI-MOM renormalization scheme, we renormalize three-quark operators corresponding to low moments non-perturbatively and take special care of the operator mixing. After performing a scheme matching and a conversion of the renormalization scale we quote our final results in the MSbar scheme at mu=2 GeV.
Moments of light cone quark density, helicity, and transversity distributions are calculated in unquenched lattice QCD at $beta = 5.5$ and $beta = 5.3$ using Wilson fermions on $ 16^3 times 32 $ lattices. These results are combined with earlier calcu lations at $beta = 5.6$ using SESAM configurations to study the continuum limit.
The internal structure of hadrons is important for a variety of topics, including the hadron form factors, proton spin and spin asymmetry in polarized proton scattering. For a systematic study generalized parton distributions (GPDs) encode importan t information on hadron structure in the entire impact parameter space. We report on a computation of nucleon GPDs based on simulations with two dynamical non-perturbatively improved Wilson quarks with pion masses down to 350MeV. We present results for the total angular momentum of quarks with chiral extrapolation based on covariant baryon chiral perturbation theory.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا