ترغب بنشر مسار تعليمي؟ اضغط هنا

Two decades after its unexpected discovery, the properties of the $X(3872)$ exotic resonance are still under intense scrutiny. In particular, there are doubts about its nature as an ensemble of mesons or having any other internal structure. We use a Diffusion Monte Carlo method to solve the many-body Schrodinger equation that describes this state as a $c bar c n bar n$ ($n=u$ or $d$ quark) system. This approach accounts for multi-particle correlations in physical observables avoiding the usual quark-clustering assumed in other theoretical techniques. The most general and accepted pairwise Coulomb$,+,$linear-confining$,+,$hyperfine spin-spin interaction, with parameters obtained by a simultaneous fit of around 100 masses of mesons and baryons, is used. The $X(3872)$ contains light quarks whose masses are given by the mechanism responsible of the dynamical breaking of chiral symmetry. The same mechanisms gives rise to Goldstone-boson exchange interactions between quarks that have been fixed in the last 10-20 years reproducing hadron, hadron-hadron and multiquark phenomenology. It appears that a meson-meson molecular configuration is preferred but, contrary to the usual assumption of $D^0bar{D}^{ast0}$ molecule for the $X(3872)$, our formalism produces $omega J/psi$ and $rho J/psi$ clusters as the most stable ones, which could explain in a natural way all the observed features of the $X(3872)$.
We use a diffusion Monte Carlo method to solve the many-body Schrodinger equation describing fully-heavy tetraquark systems. This approach allows to reduce the uncertainty of the numerical calculation at the percent level, accounts for multi-particle correlations in the physical observables, and avoids the usual quark-clustering assumed in other theoretical techniques applied to the same problem. The interaction between particles was modeled by the most general and accepted potential, i.e. a pairwise interaction including Coulomb, linear-confining and hyperfine spin-spin terms. This means that, in principle, our analysis should provide some rigorous statements about the mass location of the all-heavy tetraquark ground states, which is particularly timely due to the very recent observation made by the LHCb collaboration of some enhancements in the invariant mass spectra of $J/psi$-pairs. Our main results are: (i) the $ccbar cbar c$, $ccbar bbar b$ ($bbbar cbar c$) and $bbbar b bar b$ lowest-lying states are located well above their corresponding meson-meson thresholds; (ii) the $J^{PC}=0^{++}$ $ccbar cbar c$ ground state with preferred quark-antiquark pair configurations is compatible with the enhancement(s) observed by the LHCb collaboration; (iii) our results for the $ccbar cbar b$ and $bbbar cbar b$ sectors seem to indicate that the $0^+$ and $1^+$ ground states are almost degenerate with the $2^+$ located around $100,text{MeV}$ above them; (iv) smaller mass splittings for the $cbbar cbar b$ system are predicted, with absolute mass values in reasonable agreement with other theoretical works; (v) the $1^{++}$ $cbbar cbar b$ tetraquark ground state lies at its lowest $S$-wave meson-meson threshold and it is compatible with a molecular configuration.
262 - M.C. Gordillo , J. Boronat 2020
We revisited the phase diagram of the second layer of 4He on top of graphite using quantum Monte Carlo methods. Our aim was to explore the existence of the novel phases suggested recently in experimental works, and determine their properties and stab ility limits. We found evidence of a superfluid quantum phase with hexatic correlations, induced by the corrugation of the first Helium layer, and a quasi-two-dimensional supersolid corresponding to a 7/12 registered phase. The 4/7 commensurate solid was found to be unstable, while the triangular incommensurate crystals, stable at large densities, were normal.
We calculated the phase diagram of a continuous system of hard spheres loaded in a quasi-one dimensional bichromatic optical lattice. The wavelengths of both lattice-defining lasers were chosen to model an incommensurate arrangement. Densities of one particle and half a particle per potential well were considered. Our results can be compared directly to those of the experimental system [Fallani et al. PRL, {bf 98} 130404 (2007)] from which our initial parameters were taken. The phase diagrams for both densities are significatively different to those obtained by describing the same experimental setup with a Bose-Hubbard model.
We studied the appearance of Mott insulator domains of hard sphere bosons on quasi one-dimensional optical lattices when an harmonic trap was superimposed along the main axis of the system. Instead of the standard approximation represented by the Bos e-Hubbard model, we described those arrangements by continuous Hamiltonians that depended on the same parameters as the experimental setups. We found that for a given trap the optical potential depth, $V_0$, needed to create a single connected Mott domain decreased with the number of atoms loaded on the lattice. If the confinement was large enough, it reached a minimum when, in absence of any optical lattice, the atom density at the center of the trap was the equivalent of one particle per optical well. For larger densities, the creation of that single domain proceeded via an intermediate shell structure in which Mott domains alternated with superfluid ones.
By means of diffusion Monte Carlo calculations, we investigated the quantum phase transition between a superfluid and a Mott insulator for a system of hard-sphere bosons in a quasi one-dimensional optical lattice. For this continuous hamiltonian, we studied how the stability limits of the Mott phase changed with the optical lattice depth and the transverse confinement width. A comparison of these results to those of a one-dimensional homogeneous Bose-Hubbard model indicates that this last model describes accurately the phase diagram only in the limit of deep lattices. For shallow ones, our results are comparable to those of the sine-Gordon model in its limit of application. We provide an estimate of the critical parameters when none of those models are realistic descriptions of a quasi one-dimensional optical lattice.
We studied the superfluid-to-Mott insulator transition for bosonic hard spheres loaded in asymmetric three-dimensional optical lattices by means of diffusion Monte Carlo calculations. The onset of the transition was monitored through the change in th e chemical potential around the density corresponding to one particle per potential well. With this method, we were able to reproduce the results given in the literature for three-dimensional symmetric lattices and for systems whose asymmetry makes them equivalent to a set of quasi-one dimensional tubes. The location of the same transition for asymmetric systems akin to a stack of quasi-two dimensional lattices will be also given. Our results were checked against those given by a Bose-Hubbard model for similar arrangements.
The equation of state of H2 adsorbed in the interstitial channels of a carbon nanotube bundle has been calculated using the diffusion Monte Carlo method. The possibility of a lattice dilation, induced by H2 adsorption, has been analyzed by modeling t he cohesion energy of the bundle. The influence of factors like the interatomic potentials, the nanotube radius and the geometry of the channel on the bundle swelling is systematically analyzed. The most critical input is proved to be the C-H2 potential. Using the same model than in planar graphite, which is expected to be also accurate in nanotubes, the dilation is observed to be smaller than in previous estimations or even inexistent. H2 is highly unidimensional near the equilibrium density, the radial degree of freedom appearing progressively at higher densities.
We have studied molecular hydrogen in a pure 1D geometry and inside a narrow carbon nanotube by means of the diffusion Monte Carlo method. The one-dimensionality of H2 in the nanotube is well maintained in a large density range, this system being clo ser to an ideal 1D fluid than liquid 4He in the same setup. H2 shares with 4He the existence of a stable liquid phase and a quasi-continuous liquid-solid transition at very high linear densities.
We report results of diffusion Monte Carlo calculations for both $^4$He absorbed in a narrow single walled carbon nanotube (R = 3.42 AA) and strictly one dimensional $^4$He. Inside the tube, the binding energy of liquid $^4$He is approximately three times larger than on planar graphite. At low linear densities, $^4$He in a nanotube is an experimental realization of a one-dimensional quantum fluid. However, when the density increases the structural and energetic properties of both systems differ. At high density, a quasi-continuous liquid-solid phase transition is observed in both cases.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا