ترغب بنشر مسار تعليمي؟ اضغط هنا

We report deep EVN and eMERLIN observations of the Type Ia SN 2014J in the nearby galaxy M 82. Our observations represent, together with JVLA observations of SNe 2011fe and 2014J, the most sensitive radio studies of Type Ia SNe ever. By combining dat a and a proper modeling of the radio emission, we constrain the mass-loss rate from the progenitor system of SN 2014J to $dot{M} lesssim 7.0times 10^{-10}, {rm M_{odot}, yr^{-1}}$ (3-$sigma$; for a wind speed of $100, {rm km s^{-1}}$). If the medium around the supernova is uniform, then $n_{rm ISM} lesssim 1.3 {rm cm^3}$ (3-$sigma$), which is the most stringent limit for the (uniform) density around a Type Ia SN. Our deep upper limits favor a double-degenerate (DD) scenario--involving two WD stars--for the progenitor system of SN 2014J, as such systems have less circumstellar gas than our upper limits. By contrast, most single-degenerate (SD) scenarios, i.e., the wide family of progenitor systems where a red giant, main-sequence, or sub-giant star donates mass to a exploding WD, are ruled out by our observations. Our estimates on the limits to the gas density surrounding SN 2011fe, using the flux density limits from Chomiuk et al. (2012), agree well with their results. Although we discuss possibilities for a SD scenario to pass observational tests, as well as uncertainties in the modeling of the radio emission, the evidence from SNe 2011fe and 2014J points in the direction of a DD scenario for both.
We present the results of an eight-year long monitoring of the radio emission from the Luminous Infrared Galaxy (LIRG) NGC 7469, using 8.4 GHz Very Large Array (VLA) observations at 0.3 resolution. Our monitoring shows that the late time evolution of the radio supernova SN 2000ft follows a decline very similar to that displayed at earlier times of its optically thin phase. The late time radio emission of SN 2000ft is therefore still being powered by its interaction with the presupernova stellar wind, and not with the interstellar medium (ISM). Indeed, the ram pressure of the presupernova wind is rho_w v_w^2 approx 7.6E-9 dyn/cm^2, at a supernova age of approximately 2127 days, which is significantly larger than the expected pressure of the ISM around SN 2000ft. At this age, the SN shock has reached a distance r_{sh approx 0.06 pc, and our observations are probing the interaction of the SN with dense material that was ejected by the presupernova star about 5820 years prior to its explosion. From our VLA monitoring, we estimate that the swept-up mass by the supernova shock after about six years of expansion is approx 0.29 M_sun, assuming an average expansion speed of the supernova of 10000 km/s. We also searched for recently exploded core-collapse supernovae in our VLA images. Apart from SN 2000ft (S_ u approx 1760 microJy at its peak, corresponding to 1.1E28 erg/s/Hz, we found no evidence for any other radio supernova (RSN) more luminous than approx 6.0E26 erg/s/Hz, which suggests that no other Type IIn SN has exploded since 2000 in the circumnuclear starburst of NGC 7469.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا