ترغب بنشر مسار تعليمي؟ اضغط هنا

Constraints on the progenitor system and the environs of SN 2014J from deep radio observations

339   0   0.0 ( 0 )
 نشر من قبل Miguel A. Perez-Torres
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report deep EVN and eMERLIN observations of the Type Ia SN 2014J in the nearby galaxy M 82. Our observations represent, together with JVLA observations of SNe 2011fe and 2014J, the most sensitive radio studies of Type Ia SNe ever. By combining data and a proper modeling of the radio emission, we constrain the mass-loss rate from the progenitor system of SN 2014J to $dot{M} lesssim 7.0times 10^{-10}, {rm M_{odot}, yr^{-1}}$ (3-$sigma$; for a wind speed of $100, {rm km s^{-1}}$). If the medium around the supernova is uniform, then $n_{rm ISM} lesssim 1.3 {rm cm^3}$ (3-$sigma$), which is the most stringent limit for the (uniform) density around a Type Ia SN. Our deep upper limits favor a double-degenerate (DD) scenario--involving two WD stars--for the progenitor system of SN 2014J, as such systems have less circumstellar gas than our upper limits. By contrast, most single-degenerate (SD) scenarios, i.e., the wide family of progenitor systems where a red giant, main-sequence, or sub-giant star donates mass to a exploding WD, are ruled out by our observations. Our estimates on the limits to the gas density surrounding SN 2011fe, using the flux density limits from Chomiuk et al. (2012), agree well with their results. Although we discuss possibilities for a SD scenario to pass observational tests, as well as uncertainties in the modeling of the radio emission, the evidence from SNe 2011fe and 2014J points in the direction of a DD scenario for both.



قيم البحث

اقرأ أيضاً

We present extensive ground-based and $Hubble~Space~Telescope$ ($HST$) photometry of the highly reddened, very nearby type Ia supernova (SN Ia) 2014J in M82, covering the phases from 9 days before to about 900 days after the $B$-band maximum. SN 2014 J is similar to other normal SNe Ia near the maximum light, but it shows flux excess in the $B$ band in the early nebular phase. This excess flux emission can be due to light scattering by some structures of circumstellar materials located at a few 10$^{17}$ cm, consistent with a single degenerate progenitor system or a double degenerate progenitor system with mass outflows in the final evolution or magnetically driven winds around the binary system. At t$sim$+300 to $sim$+500 days past the $B$-band maximum, the light curve of SN 2014J shows a faster decline relative to the $^{56}$Ni decay. Such a feature can be attributed to the significant weakening of the emission features around [Fe III] $lambda$4700 and [Fe II] $lambda$5200 rather than the positron escape as previously suggested. Analysis of the $HST$ images taken at t$>$600 days confirms that the luminosity of SN 2014J maintains a flat evolution at the very late phase. Fitting the late-time pseudo-bolometric light curve with radioactive decay of $^{56}$Ni, $^{57}$Ni and $^{55}$Fe isotopes, we obtain the mass ratio $^{57}$Ni/$^{56}$Ni as $0.035 pm 0.011$, which is consistent with the corresponding value predicted from the 2D and 3D delayed-detonation models. Combined with early-time analysis, we propose that delayed-detonation through single degenerate scenario is most likely favored for SN 2014J.
96 - Niharika Sravan 2017
Type IIb supernovae (SNe) present a unique opportunity for understanding the progenitors of stripped-envelope (SE) SNe as the stellar progenitor of several Type IIb SNe have been identified in pre-explosion images. In this paper, we use Bayesian infe rence and a large grid of non-rotating solar-metallicity single and binary stellar models to derive the associated probability distributions of single and binary progenitors of the Type IIb SN 2016gkg using existing observational constraints. We find that potential binary star progenitors have smaller pre-SN hydrogen-envelope and helium-core masses than potential single-star progenitors typically by 0.1 Msun and 2 Msun, respectively. We find that, a binary companion, if present, is a main-sequence or red-giant star. Apart from this, we do not find strong constraints on the nature of the companion star. We demonstrate that the range of progenitor helium-core mass inferred from observations could help improve constraints on the progenitor. We find that the probability that the progenitor of SN 2016gkg was a binary is 22% when we use constraints only on the progenitor luminosity and effective temperature. Imposing the range of pre-SN progenitor hydrogen-envelope mass and radius inferred from SN light-curves the probability the progenitor is a binary increases to 44%. However, there is no clear preference for a binary progenitor. This is in contrast to binaries being the currently favored formation channel for Type IIb SNe. Our analysis demonstrates the importance of statistical inference methods to constrain progenitor channels.
We constrain the properties of the progenitor system of the highly reddened Type Ia supernova (SN) 2014J in Messier 82 (M82; d ~ 3.5 Mpc). We determine the SN location using Keck-II K-band adaptive optics images, and we find no evidence for flux from a progenitor system in pre-explosion near-ultraviolet through near-infrared Hubble Space Telescope (HST) images. Our upper limits exclude systems having a bright red giant companion, including symbiotic novae with luminosities comparable to that of RS Ophiuchi. While the flux constraints are also inconsistent with predictions for comparatively cool He-donor systems (T < ~35,000 K), we cannot preclude a system similar to V445 Puppis. The progenitor constraints are robust across a wide range of R_V and A_V values, but significantly greater values than those inferred from the SN light curve and spectrum would yield proportionally brighter luminosity limits. The comparatively faint flux expected from a binary progenitor system consisting of white dwarf stars would not have been detected in the pre-explosion HST imaging. Infrared HST exposures yield more stringent constraints on the luminosities of very cool (T < 3000 K) companion stars than was possible in the case of SN Ia 2011fe.
We present a new maximum-light optical spectrum of the the extremely low luminosity and exceptionally low energy Type Ia supernova (SN Ia) 2008ha, obtained one week before the earliest published spectrum. Previous observations of SN 2008ha were unabl e to distinguish between a massive star and white dwarf origin for the SN. The new maximum-light spectrum, obtained one week before the earliest previously published spectrum, unambiguously shows features corresponding to intermediate mass elements, including silicon, sulfur, and carbon. Although strong silicon features are seen in some core-collapse SNe, sulfur features, which are a signature of carbon/oxygen burning, have always been observed to be weak in such events. It is therefore likely that SN 2008ha was the result of a thermonuclear explosion of a carbon-oxygen white dwarf. Carbon features at maximum light show that unburned material is present to significant depths in the SN ejecta, strengthening the case that SN 2008ha was a failed deflagration. We also present late-time imaging and spectroscopy that are consistent with this scenario.
Core-collapse supernovae (SNe), marking the deaths of massive stars, are among the most powerful explosions in the Universe, responsible, e.g., for a predominant synthesis of chemical elements in their host galaxies. The majority of massive stars are thought to be born in close binary systems. To date, putative binary companions to the progenitors of SNe may have been detected in only two cases, SNe 1993J and 2011dh. We report on the search for a companion of the progenitor of the Type Ic SN 1994I, long considered to have been the result of binary interaction. Twenty years after explosion, we used the Hubble Space Telescope to observe the SN site in the ultraviolet (F275W and F336W bands), resulting in deep upper limits on the expected companion: F275W > 26.1 mag and F336W > 24.7 mag. These allows us to exclude the presence of a main sequence companion with a mass >~ 10 Msun. Through comparison with theoretical simulations of possible progenitor populations, we show that the upper limits to a companion detection exclude interacting binaries with semi-conservative (late Case A or early Case B) mass transfer. The limits tend to favor systems with non-conservative, late Case B mass transfer with intermediate initial orbital periods and mass ratios. The most likely mass range for a putative main sequence companion would be ~5--12 Msun, the upper end of which corresponds to the inferred upper detection limit.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا