ترغب بنشر مسار تعليمي؟ اضغط هنا

General microscopic mechanism of ferroelectric ordering in chiral smectic C* liquid crystals is considered. It is shown that if the mesogenic molecules have a sufficiently low symmetry, the spontaneous polarization is proportional to one of the biaxi al vector order parameters of the smectic C phase. This order parameter may be determined by intermolecular interactions which are not sensitive to molecular chirality. At the same time, the polarization is also proportional to a pseudoscalar parameter which vanishes if the molecules are nonchiral. The general statistical theory of ferroelectric ordering is illustrated by two particular models. The first model is based on electrostatic quadrupole-quadrupole interactions, and it enables one to obtain explicit analytical expressions for the spontaneous polarization. In the second model, the molecular chirality and polarity are determined by a pair of off-center nonparallel dipoles. For this case, the spontaneous polarization is calculated numerically as a function of temperature. The theory provides a more general interpretation of the previous approaches including the classical Boulder model.
We propose electrically tunable hybrid metamaterial consisting of special wire grid immersed into nematic liquid crystal. The plasma-like permittivity of the structure can be substantially varied due to switching of the liquid crystal alignment by ex ternal voltages applied to the wires. Depending on the scale of the structure, the effect is available for both microwave and optical frequency ranges.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا