ترغب بنشر مسار تعليمي؟ اضغط هنا

Graphene is famous for being a host of 2D Dirac fermions. However, spin-orbit coupling introduces a small gap, so that graphene is formally a quantum spin hall insulator. Here we present symmetry-protected 2D Dirac semimetals, which feature Dirac con es at high-symmetry points that are emph{not} gapped by spin-orbit interactions, and exhibit behavior distinct from both graphene and 3D Dirac semimetals. Using a two-site tight-binding model, we construct representatives of three possible distinct Dirac semimetal phases, and show that single symmetry-protected Dirac points are impossible in two dimensions. An essential role is played by the presence of non-symmorphic space group symmetries. We argue that these symmetries tune the system to the boundary between a 2D topological and trivial insulator. By breaking the symmetries we are able to access trivial and topological insulators as well as Weyl semimetal phases.
The correlation between the shift current mechanism for the bulk photovoltaic effect (BPVE) and the structural and electronic properties of ferroelectric perovskite oxides is not well understood. Here, we study and engineer the shift current photovol taic effect using a visible-light-absorbing ferroelectric Pb(Ni$_{x}$Ti$_{1-x}$)O$_{3-x}$ solid solution from first principles. We show that the covalent orbital character dicates the direction, magnitude, and onset energy of shift current in a predictable fashion. In particular, we find that the shift current response can be enhanced via electrostatic control in layered ferroelectrics, as bound charges face a stronger impetus to screen the electric field in a thicker material, delocalizing electron densities. This heterogeneous layered structure with alternative photocurrent generating and insulating layers is ideal for BPVE applications.
93 - Lisa M. Young 2014
I present an overview of new observations of atomic and molecular gas in early-type galaxies, focusing on the Atlas3D project. Our data on stellar kinematics, age and metallicity, and ionized gas kinematics allow us to place the cold gas into the bro ader context of early-type galaxy assembly and star formation history. The cold gas data also provide valuable constraints for numerical simulations of early-type galaxies.
We calculate the shift current response, which has been identified as the dominant mechanism for the bulk photovoltaic effect, for the polar compounds LiAsS$_text{2}$, LiAsSe$_text{2}$, and NaAsSe$_text{2}$. We find that the magnitudes of the photovo ltaic responses in the visible range for these compounds exceed the maximum response obtained for BiFeO$_text{3}$ by 10 - 20 times. We correlate the high shift current response with the existence of $p$ states at both the valence and conduction band edges, as well as the dispersion of these bands, while also showing that high polarization is not a requirement. With low experimental band gaps of less than 2 eV and high shift current response, these materials have potential for use as bulk photovoltaics.
77 - L. M. Young , N. Scott , P. Serra 2013
We present a study of the cold gas contents of the Atlas3D early-type galaxies, in the context of their optical colours, near-UV colours, and Hbeta absorption line strengths. Early-type (elliptical and lenticular) galaxies are not as gas-poor as prev iously thought, and at least 40% of local early-type galaxies are now known to contain molecular and/or atomic gas. This cold gas offers the opportunity to study recent galaxy evolution through the processes of cold gas acquisition, consumption (star formation), and removal. Molecular and atomic gas detection rates range from 10% to 34% in red sequence early-type galaxies, depending on how the red sequence is defined, and from 50% to 70% in blue early-type galaxies. Notably, massive red sequence early-type galaxies (stellar masses > 5e10 Msun, derived from dynamical models) are found to have HI masses up to M(HI)/Mstar ~ 0.06 and H_2 masses up to M(H$_2$)/Mstar ~ 0.01. Some 20% of all massive early-type galaxies may have retained atomic and/or molecular gas through their transition to the red sequence. However, kinematic and metallicity signatures of external gas accretion (either from satellite galaxies or the intergalactic medium) are also common, particularly at stellar masses <= 5e10 Msun, where such signatures are found in ~ 50% of H$_2$-rich early-type galaxies. Our data are thus consistent with a scenario in which fast rotator early-type galaxies are quenched former spiral galaxies which have undergone some bulge growth processes, and in addition, some of them also experience cold gas accretion which can initiate a period of modest star formation activity. We discuss implications for the interpretation of colour-magnitude diagrams.
We report on a Dirac-like Fermi surface in three-dimensional bulk materials in a distorted spinel structure on the basis of density functional theory (DFT) as well as tight-binding theory. The four examples we provide in this paper are BiZnSiO4, BiCa SiO4, BiMgSiO4, and BiAlInO4. A necessary characteristic of these structures is that they contain a Bi lattice which forms a hierarchy of chain-like substructures, with consequences for both fundamental understanding and materials design.
We calculate the bulk photovoltaic response of the ferroelectrics BaTiO$_3$ and PbTiO$_3$ from first principles by applying shift current theory to the electronic structure from density functional theory. The first principles results for BaTiO$_3$ re produce eperimental photocurrent direction and magnitude as a function of light frequency, as well as the dependence of current on light polarization, demonstrating that shift current is the dominant mechanism of the bulk photovoltaic effect in BaTiO$_3$. Additionally, we analyze the relationship between response and material properties in detail. The photocurrent does not depend simply or strongly on the magnitude of material polarization, as has been previously assumed; instead, electronic states with delocalized, covalent bonding that is highly asymmetric along the current direction are required for strong shift current enhancements. The complexity of the response dependence on both external and material parameters suggests applications not only in solar energy conversion, but to photocatalysis and sensor and switch type devices as well.
The 4 Ms Chandra Deep Field-South (CDF-S) and other deep X-ray surveys have been highly effective at selecting active galactic nuclei (AGN). However, cosmologically distant low-luminosity AGN (LLAGN) have remained a challenge to identify due to signi ficant contribution from the host galaxy. We identify long-term X-ray variability (~month-years, observed frame) in 20 of 92 CDF-S galaxies spanning redshifts z~0.08-1.02 that do not meet other AGN selection criteria. We show that the observed variability cannot be explained by X-ray binary populations or ultraluminous X-ray sources, so the variability is most likely caused by accretion onto a supermassive black hole. The variable galaxies are not heavily obscured in general, with a stacked effective power-law photon index of Gamma_stack~1.93+/-0.13, and are therefore likely LLAGN. The LLAGN tend to lie a factor of ~6-80 below the extrapolated linear variability-luminosity relation measured for luminous AGN. This may be explained by their lower accretion rates. Variability-independent black-hole mass and accretion-rate estimates for variable galaxies show that they sample a significantly different black-hole mass-accretion rate space, with masses a factor of 2.4 lower and accretion rates a factor of 22.5 lower than variable luminous AGN at the same redshift. We find that an empirical model based on a universal broken power-law PSD function, where the break frequency depends on SMBH mass and accretion rate, roughly reproduces the shape, but not the normalization, of the variability-luminosity trends measured for variable galaxies and more luminous AGN.
The topological insulating phase results from inversion of the band gap due to spin-orbit coupling at an odd number of time-reversal symmetric points. In Bi$_2$Se$_3$, this inversion occurs at the $Gamma$ point. For bulk Bi$_2$Se$_3$, we have analyze d the effect of arbitrary strain on the $Gamma$ point band gap using Density Functional Theory. By computing the band structure both with and without spin-orbit interactions, we consider the effects of strain on the gap via Coulombic interaction and spin-orbit interaction separately. While compressive strain acts to decrease the Coulombic gap, it also increases the strength of the spin-orbit interaction, increasing the inverted gap. Comparison with Bi$_2$Te$_3$ supports the conclusion that effects on both Coulombic and spin-orbit interactions are critical to understanding the behavior of topological insulators under strain, and we propose that the topological insulating phase can be effectively manipulated by inducing strain through chemical substitution.
We have carried out a survey for 12CO J=1-0 and J=2-1 emission in the 260 early-type galaxies of the volume-limited Atlas3D sample, with the goal of connecting their star formation and assembly histories to their cold gas content. This is the largest volume-limited CO survey of its kind and is the first to include many Virgo Cluster members. Sample members are dynamically hot galaxies with a median stellar mass 3times 10^{10} Msun; they are selected by morphology rather than colour, and the bulk of them lie on the red sequence. The overall CO detection rate is 56/259 = 0.22 error 0.03, with no dependence on K luminosity and only a modest dependence on dynamical mass. There are a dozen CO detections among the Virgo Cluster members; statistical analysis of their H_2 mass distributions and their dynamical status within the cluster shows that the clusters influence on their molecular masses is subtle at best, even though (unlike spirals) they seem to be virialized within the cluster. We suggest that the cluster members have retained their molecular gas through several Gyr residences in the cluster. There are also a few extremely CO-rich early-type galaxies with H_2 masses >= 10^9 Msun, and these are in low density environments. We do find a significant trend between molecular content and the stellar specific angular momentum. The galaxies of low angular momentum also have low CO detection rates, suggesting that their formation processes were more effective at destroying molecular gas or preventing its re-accretion. We speculate on the implications of these data for the formation of various sub-classes of early-type galaxies.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا