ترغب بنشر مسار تعليمي؟ اضغط هنا

48 - Y. Ikejiri 2009
Blazars are a kind of active galactic nuclei (AGN) in which a relativistic jet is considered to be directed along the line of sight. They are characterized by strong and rapid variability of the flux and high polarization. We performed a monitoring o f 41 blazars in the optical and near-infrared regions from 2008 to 2009 using TRISPEC attached to the Kanata 1.5-m telescope. In this paper, we report the correlation of the flux, color and polarization using our data, and discuss universal features for blazars, which have not fully been established. Three blazars (3C 454.3, QSO 0454$-$234, and PKS 1510$-$089) tended to be redder when they were brighter, only during their faint states. This color behavior suggests that the contribution of a thermal component is strong in the faint states for those objects. Excluding this redder-when-brighter phase, we found that 24 blazars tended to be bluer when they were brighter. This number corresponds to 83% among well-observed objects which we observed for $>10$ nights. Thus, we conclude that the bluer-when-brighter trend is a universal feature for blazars. On the other hand, the correlation of the flux and the polarization degree is relatively weak; only 10 objects showed a significant positive correlation. We also investigated the luminosity-dependence of the color and polarization, and found that lower luminosity objects have smaller variation amplitudes both in the flux, color, and polarization degree.
111 - R. Matsui , M. Uemura , A. Arai 2009
We report on optical and infrared photometric observations of a WZ Sge-type dwarf nova, V455 And during a superoutburst in 2007. These observations were performed with the KANATA (V, J, and K_s bands) and MITSuME (g, Rc, and Ic bands) telescopes. Our 6-band simultaneous observations allowed us to investigate the temporal variation of the temperature and the size of the emitting region associated with the superoutburst and short-term modulations, such as early and ordinary superhumps. A hot (>11000 K) accretion disk suddenly disappeared when the superoutburst finished, while blackbody emission, probably from the disk, still remained dominant in the optical region with a moderately high temperature (~8000 K). This indicates that a substantial amount of gas was stored in the disk even after the outburst. This remnant matter may be a sign of an expected mass-reservoir which can trigger echo outbursts observed in several WZ Sge stars. The color variation associated with superhumps indicates that viscous heating in a superhump source stopped on the way to the superhump maximum, and a subsequent expansion of a low-temperature region made the maximum. The color variation of early superhumps was totally different from that of superhumps: the object was bluest at the early superhump minimum. The temperature of the early superhump light source was lower than that of an underlying component, indicating that the early superhump light source was a vertically expanded low-temperature region at the outermost part of the disk.
126 - C. S. Stalin 2009
We present results of our intra-night optical flux monitoring observations of S5 0716+714 done simultaneously in gRI filters. The observations were done using Multicolor Imaging Telescopes for Survey and Monstrous Explosions (MITSuME) instrument on t he 50 cm telescope at the Okayama Astrophysical Observatory over 30 nights between 11 March 2008 and 8 May 2008. Of these 30 nights, 22 nights have continuous (without any break) observations with duration ranging from 1 to 6 hours and hence were considered for intra-night optical variability (INOV). In total we have 4888 datapoints which were simultaneous in gR and I filters. Of the 22 nights considered for INOV, the object showed flux variability on 19 nights with the amplitude of variability in the I-band ranging from ~4% to ~55%. The duty cycle for INOV was thus found to be 83%. No time lag between different bands was noticed on most of the nights, except for 3 nights where the variation in g was found to lead that of the I band by 0.3 to 1.5 hrs. On inter-night timescales, no lag was found between g and I bands. On inter-night timescales as well as intra-night timescales on most of the nights, the amplitude of variability was found to increase toward shorter wavelengths. The flux variations in the different bands were not achromatic, with the blazar tending to become bluer when brighter both on inter-night and intra-night timescales; and this might be attributed to the larger amplitude variation at shorter wavelengths. A clear periodic variation of 3.3 hrs was found on 1 April 2008 and a hint for another possible periodic variability of 4 hrs was found on 31 March 2008. During our 30 days of observations over a 2 month period the source has varied with an amplitude of variability as large as ~80%.
70 - M. Uemura , A. Arai , T. Krajci 2007
Several SU UMa-type dwarf novae, in particular, WZ Sge-type stars tend to exhibit rebrightenings after superoutbursts. The rebrightening phenomenon is problematic for the disk instability theory of dwarf novae since it requires a large amount of remn ant matter in the disk even after superoutbursts. Here, we report our optical and infrared observations during the first-ever outburst of a new dwarf nova, SDSS J102146.44+234926.3. During the outburst, we detected superhumps with a period of 0.056281 +/- 0.000015 d, which is typical for superhump periods in WZ Sge stars. In conjunction with the appearance of a long-lived rebrightening, we conclude that the object is a new member of WZ Sge stars. Our observations, furthermore, revealed infrared behaviors for the first time in the rebrightening phase of WZ Sge stars. We discovered prominent infrared superhumps. We calculate the color temperature of the infrared superhump source to be 4600-6400 K. These temperatures are too low to be explained with a fully-ionized disk appearing during dwarf nova outbursts. We also found a Ks-band excess over the hot disk component. These unprecedented infrared activities provide evidence for the presence of mass reservoir at the outermost part of the accretion disk. We propose that a moderately high mass-accretion rate at this infrared active region leads to the long-lived rebrightening observed in SDSS J102146.44+234926.3.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا